Muhammad Qurratulain Khan;Abdo Gaber;Mohammad Parvini;Philipp Schulz;Gerhard Fettweis
{"title":"Multi-Task Learning for mmWave Transceiver Beam Prediction","authors":"Muhammad Qurratulain Khan;Abdo Gaber;Mohammad Parvini;Philipp Schulz;Gerhard Fettweis","doi":"10.1109/OJCOMS.2025.3583074","DOIUrl":null,"url":null,"abstract":"Rigorous and reliable alignment of narrow transceiver beams is a requisite for ensuring the highly directional transmission in millimeter-wave (mmWave) communications. Exhaustively testing these narrow beam pairs results in increased reference signal (RS) overhead, latency, and power consumption. In this paper, we propose a centralized multi-task learning (MTL) based beam prediction strategy that ensures a high success rate using measurements from a few site-specific probing beams identified via the proposed uniformly distributed beam relevance and beam significance (UDBRBS) criterion, thereby obviating the need for an exhaustive scan. Performance evaluation over 3rd Generation Partnership Project (3GPP) defined performance indicators demonstrates that the proposed method outperforms existing independent task learning (ITL) and single task learning (STL) beam prediction designs. We further argue that the proposed strategy is highly practical for implementation in fifth generation (5G)-Advanced and sixth generation (6G) communication systems.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"5535-5551"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11050966","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11050966/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Rigorous and reliable alignment of narrow transceiver beams is a requisite for ensuring the highly directional transmission in millimeter-wave (mmWave) communications. Exhaustively testing these narrow beam pairs results in increased reference signal (RS) overhead, latency, and power consumption. In this paper, we propose a centralized multi-task learning (MTL) based beam prediction strategy that ensures a high success rate using measurements from a few site-specific probing beams identified via the proposed uniformly distributed beam relevance and beam significance (UDBRBS) criterion, thereby obviating the need for an exhaustive scan. Performance evaluation over 3rd Generation Partnership Project (3GPP) defined performance indicators demonstrates that the proposed method outperforms existing independent task learning (ITL) and single task learning (STL) beam prediction designs. We further argue that the proposed strategy is highly practical for implementation in fifth generation (5G)-Advanced and sixth generation (6G) communication systems.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.