Tensor-Train FDTD: Implementation Aspects and Performance Analysis

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiping Zhou;Fernando L. Teixeira
{"title":"Tensor-Train FDTD: Implementation Aspects and Performance Analysis","authors":"Qiping Zhou;Fernando L. Teixeira","doi":"10.1109/TAP.2025.3551598","DOIUrl":null,"url":null,"abstract":"Tensor-train (TT) decompositions have the potential to significantly improve the performance of finite-difference time-domain (FDTD) algorithms in terms of CPU time and memory storage. To this end, we extend TT-format FDTD implementations to cases incorporating perfectly matched layer (PML) boundaries. We assess the performance of TT-format FDTD implementations for different error tolerance levels. In particular, the tradeoff between accuracy and efficiency is analyzed. Additionally, a regularization approach is proposed to control rank growth in TT-format FDTD simulations with highly disparate field amplitude levels across the domain brought forth by PML absorption and diverse source excitations.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 7","pages":"4637-4645"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10944234/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor-train (TT) decompositions have the potential to significantly improve the performance of finite-difference time-domain (FDTD) algorithms in terms of CPU time and memory storage. To this end, we extend TT-format FDTD implementations to cases incorporating perfectly matched layer (PML) boundaries. We assess the performance of TT-format FDTD implementations for different error tolerance levels. In particular, the tradeoff between accuracy and efficiency is analyzed. Additionally, a regularization approach is proposed to control rank growth in TT-format FDTD simulations with highly disparate field amplitude levels across the domain brought forth by PML absorption and diverse source excitations.
张量训练FDTD:实现方面和性能分析
张量训练(TT)分解在CPU时间和内存存储方面具有显著提高有限差分时域(FDTD)算法性能的潜力。为此,我们将tt格式的FDTD实现扩展到包含完美匹配层(PML)边界的情况。我们评估了tt格式FDTD实现在不同容错级别下的性能。特别地,分析了精度和效率之间的权衡。此外,提出了一种正则化方法来控制tt格式FDTD仿真中由于PML吸收和不同源激励引起的跨域高度不同的场振幅水平的秩增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信