Computationally Efficient Design of an LNA Input Matching Network Using Automatic Differentiation

IF 4.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kiran A. Shila
{"title":"Computationally Efficient Design of an LNA Input Matching Network Using Automatic Differentiation","authors":"Kiran A. Shila","doi":"10.1109/JMW.2025.3568779","DOIUrl":null,"url":null,"abstract":"We present a method for the design of an LNA input matching network using automatic differentiation (AD), a technique made popular by machine learning. The input matching network consists of a non-uniform suspended stripline transformer, directly optimized with AD-provided gradients. Compared to the standard approach of finite-differences, AD provides orders of magnitude faster optimization time for gradient-based solvers. This dramatic speedup reduces the iteration time during design and enables the exploration of more complex geometries. The LNA designed with this approach improves over a previous two-section uniform-line design, achieving an average noise temperature of (11.53 <inline-formula><tex-math>$\\pm$</tex-math></inline-formula> 0.42) K over the frequency range of 0.7 GHz to 2 GHz at room temperature. We optimized the geometry in under 5 s, <inline-formula><tex-math>$40$</tex-math></inline-formula>x faster than optimizing with finite-differences.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 4","pages":"972-982"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11021605","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11021605/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for the design of an LNA input matching network using automatic differentiation (AD), a technique made popular by machine learning. The input matching network consists of a non-uniform suspended stripline transformer, directly optimized with AD-provided gradients. Compared to the standard approach of finite-differences, AD provides orders of magnitude faster optimization time for gradient-based solvers. This dramatic speedup reduces the iteration time during design and enables the exploration of more complex geometries. The LNA designed with this approach improves over a previous two-section uniform-line design, achieving an average noise temperature of (11.53 $\pm$ 0.42) K over the frequency range of 0.7 GHz to 2 GHz at room temperature. We optimized the geometry in under 5 s, $40$x faster than optimizing with finite-differences.
基于自动微分的LNA输入匹配网络的高效计算设计
我们提出了一种使用自动微分(AD)设计LNA输入匹配网络的方法,这是一种由机器学习流行的技术。输入匹配网络由一个非均匀悬挂带状线变压器组成,直接通过ad提供的梯度进行优化。与有限差分的标准方法相比,AD为基于梯度的求解器提供了数量级更快的优化时间。这种显著的加速减少了设计期间的迭代时间,并使探索更复杂的几何形状成为可能。采用这种方法设计的LNA改进了之前的两段均匀线设计,在室温下,在0.7 GHz至2 GHz的频率范围内,平均噪声温度为(11.53 $\pm$ 0.42) K。我们在5秒内优化了几何图形,比使用有限差分优化快了40美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信