{"title":"Controller Adaptation via Learning Solutions of Contextual Bayesian Optimization","authors":"Viet-Anh Le;Andreas A. Malikopoulos","doi":"10.1109/LRA.2025.3585716","DOIUrl":null,"url":null,"abstract":"In this work, we propose a framework for adapting the controller's parameters based on learning optimal solutions from contextual black-box optimization problems. We consider a class of control design problems for dynamical systems operating in different environments or conditions represented by contextual parameters. The overarching goal is to identify the controller parameters that maximize the controlled system's performance, given different realizations of the contextual parameters. We formulate a contextual Bayesian optimization problem in which the solution is actively learned using Gaussian processes to approximate the controller adaptation strategy. We demonstrate the efficacy of the proposed framework with a sim-to-real example. We learn the optimal weighting strategy of a model predictive control for connected and automated vehicles interacting with human-driven vehicles from simulations and then deploy it in a real-time experiment.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"8308-8315"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11068150/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a framework for adapting the controller's parameters based on learning optimal solutions from contextual black-box optimization problems. We consider a class of control design problems for dynamical systems operating in different environments or conditions represented by contextual parameters. The overarching goal is to identify the controller parameters that maximize the controlled system's performance, given different realizations of the contextual parameters. We formulate a contextual Bayesian optimization problem in which the solution is actively learned using Gaussian processes to approximate the controller adaptation strategy. We demonstrate the efficacy of the proposed framework with a sim-to-real example. We learn the optimal weighting strategy of a model predictive control for connected and automated vehicles interacting with human-driven vehicles from simulations and then deploy it in a real-time experiment.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.