{"title":"Digital Twins in Additive Manufacturing: A systematic review","authors":"Md Manjurul Ahsan , Yingtao Liu , Shivakumar Raman , Zahed Siddique","doi":"10.1016/j.iot.2025.101692","DOIUrl":null,"url":null,"abstract":"<div><div>Digital Twins (DTs) are becoming popular in Additive Manufacturing (AM) due to their ability to create virtual replicas of physical components of AM machines, which helps in real-time production monitoring. Advanced techniques such as Machine Learning (ML), Augmented Reality (AR), and simulation-based models play key roles in developing intelligent and adaptable DTs in manufacturing processes. However, questions remain regarding scalability, the integration of high-quality data, and the computational power required for real-time applications in developing DTs. Understanding the current state of DTs in AM is essential to address these challenges and fully utilize their potential in advancing AM processes. Considering this opportunity, this work aims to provide a comprehensive overview of DTs in AM by addressing the following four research questions: (1) What are the key types of DTs used in AM and their specific applications? (2) What are the recent developments and implementations of DTs? (3) How are DTs employed in process improvement and hybrid manufacturing? (4) How are DTs integrated with Industry 4.0 technologies? By discussing current applications and techniques, we aim to offer a better understanding and potential future research directions for researchers and practitioners in AM and DTs.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101692"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002069","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital Twins (DTs) are becoming popular in Additive Manufacturing (AM) due to their ability to create virtual replicas of physical components of AM machines, which helps in real-time production monitoring. Advanced techniques such as Machine Learning (ML), Augmented Reality (AR), and simulation-based models play key roles in developing intelligent and adaptable DTs in manufacturing processes. However, questions remain regarding scalability, the integration of high-quality data, and the computational power required for real-time applications in developing DTs. Understanding the current state of DTs in AM is essential to address these challenges and fully utilize their potential in advancing AM processes. Considering this opportunity, this work aims to provide a comprehensive overview of DTs in AM by addressing the following four research questions: (1) What are the key types of DTs used in AM and their specific applications? (2) What are the recent developments and implementations of DTs? (3) How are DTs employed in process improvement and hybrid manufacturing? (4) How are DTs integrated with Industry 4.0 technologies? By discussing current applications and techniques, we aim to offer a better understanding and potential future research directions for researchers and practitioners in AM and DTs.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.