Lp coarse Baum-Connes conjecture via C0 coarse geometry

IF 0.5 4区 数学 Q3 MATHEMATICS
Hang Wang , Yanru Wang , Jianguo Zhang , Dapeng Zhou
{"title":"Lp coarse Baum-Connes conjecture via C0 coarse geometry","authors":"Hang Wang ,&nbsp;Yanru Wang ,&nbsp;Jianguo Zhang ,&nbsp;Dapeng Zhou","doi":"10.1016/j.topol.2025.109518","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture for <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> via <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> coarse structure, which is a refinement of the bounded coarse structure on a metric space. We prove that the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> version of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture holds for a finite-dimensional simplicial complex equipped with a uniform spherical metric. Using this result, we construct an obstruction group for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture. As an application, we show that the obstruction group vanishes under the assumption of finite asymptotic dimension, thereby providing a new proof of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture in this case.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109518"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003165","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the Lp coarse Baum-Connes conjecture for p[1,) via C0 coarse structure, which is a refinement of the bounded coarse structure on a metric space. We prove that the C0 version of the Lp coarse Baum-Connes conjecture holds for a finite-dimensional simplicial complex equipped with a uniform spherical metric. Using this result, we construct an obstruction group for the Lp coarse Baum-Connes conjecture. As an application, we show that the obstruction group vanishes under the assumption of finite asymptotic dimension, thereby providing a new proof of the Lp coarse Baum-Connes conjecture in this case.
基于C0粗糙几何的Lp粗糙Baum-Connes猜想
本文通过C0粗结构研究了p∈[1,∞]的Lp粗baum - cones猜想,这是度量空间上有界粗结构的一种改进。我们证明了Lp粗Baum-Connes猜想的C0版本对于具有均匀球度规的有限维简单复形成立。利用这一结果,我们构造了Lp粗Baum-Connes猜想的一个阻塞群。作为一个应用,我们证明了在有限渐近维数的假设下,阻塞群会消失,从而在这种情况下提供了Lp粗Baum-Connes猜想的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信