SMART quality control analysis of pavement condition data for pavement management applications

IF 4.8 Q2 TRANSPORTATION
Carlos M. Chang , Ding Xin Cheng , Roger E. Smith , Sui G. Tan , Abid Hossain
{"title":"SMART quality control analysis of pavement condition data for pavement management applications","authors":"Carlos M. Chang ,&nbsp;Ding Xin Cheng ,&nbsp;Roger E. Smith ,&nbsp;Sui G. Tan ,&nbsp;Abid Hossain","doi":"10.1016/j.ijtst.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>Assuring the accuracy and reliability of pavement condition data is crucial for effective decision-making in pavement management. Despite existing data collection protocols, concerns persist regarding data quality. This paper introduces SMART, a systematic statistical method designed to analyze the quality of pavement condition data from field surveys for pavement management applications. SMART employs a structured procedure that expands traditional descriptive statistics by applying interrater reliability statistics combined with bootstrapping methods and Modified-Blant Altman diagrams to evaluate data quality. A comparative analysis of interrater statistics, including Cohen’s Kappa (CK), Interclass Correlation (IC), Krippendorff’s Alpha (KA), Percent Agreement (PA), and Weighted Cohen’s Kappa (WCK), is conducted in the research study. As a result, the adoption of KA and Modified Bland-Altman diagrams for data analysis is recommended. KA demonstrates versatility across diverse data types, accommodating nominal, ordinal, interval, and ratio-level data, while Modified Bland-Altman diagrams facilitate data dispersion analysis to visualize possible bias trends for the condition ratings. A case study is presented to demonstrate the applicability of SMART to analyzing Pavement Condition Index (PCI) data provided by the Metropolitan Transportation Commission (MTC) in California. This methodological approach aims to enhance pavement management decisions by ensuring the reliability of condition field survey data through the implementation of robust analytical quality control procedures.</div></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"18 ","pages":"Pages 227-244"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043024000728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Assuring the accuracy and reliability of pavement condition data is crucial for effective decision-making in pavement management. Despite existing data collection protocols, concerns persist regarding data quality. This paper introduces SMART, a systematic statistical method designed to analyze the quality of pavement condition data from field surveys for pavement management applications. SMART employs a structured procedure that expands traditional descriptive statistics by applying interrater reliability statistics combined with bootstrapping methods and Modified-Blant Altman diagrams to evaluate data quality. A comparative analysis of interrater statistics, including Cohen’s Kappa (CK), Interclass Correlation (IC), Krippendorff’s Alpha (KA), Percent Agreement (PA), and Weighted Cohen’s Kappa (WCK), is conducted in the research study. As a result, the adoption of KA and Modified Bland-Altman diagrams for data analysis is recommended. KA demonstrates versatility across diverse data types, accommodating nominal, ordinal, interval, and ratio-level data, while Modified Bland-Altman diagrams facilitate data dispersion analysis to visualize possible bias trends for the condition ratings. A case study is presented to demonstrate the applicability of SMART to analyzing Pavement Condition Index (PCI) data provided by the Metropolitan Transportation Commission (MTC) in California. This methodological approach aims to enhance pavement management decisions by ensuring the reliability of condition field survey data through the implementation of robust analytical quality control procedures.
SMART质量控制分析路面状况数据,用于路面管理应用
保证路面状况数据的准确性和可靠性对路面管理的有效决策至关重要。尽管存在现有的数据收集协议,但对数据质量的关注仍然存在。本文介绍了SMART,这是一种系统的统计方法,用于分析路面管理应用中实地调查的路面状况数据的质量。SMART采用结构化程序,通过应用互连可靠性统计与自举方法和Modified-Blant Altman图相结合来评估数据质量,从而扩展传统的描述性统计。在本研究中,对科恩Kappa (CK)、班级间相关(IC)、Krippendorff’s Alpha (KA)、百分比一致性(PA)和加权科恩Kappa (WCK)等统计数据进行了比较分析。因此,建议采用KA和修正Bland-Altman图进行数据分析。KA展示了不同数据类型的通用性,可容纳标称、有序、区间和比率水平数据,而修改的Bland-Altman图有助于数据分散分析,以可视化条件评级的可能偏差趋势。通过一个案例研究,展示了SMART在分析加州大都会交通委员会(MTC)提供的路面状况指数(PCI)数据方面的适用性。该方法旨在通过实施稳健的分析质量控制程序,确保条件现场调查数据的可靠性,从而提高路面管理决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信