Repurposing losartan potassium against rheumatoid arthritis via transdermally-delivered leciplexes: Accentuated efficacy through modulation of angiotensin II/AT1R/AT2R axis
Amira A. Hussein , Basmah N. Aldosari , Randa M. Zaki , Obaid Afzal , Adel A. Ali , Heba M. Aboud , Yasmin M. Ahmed , Demiana M. Naguib
{"title":"Repurposing losartan potassium against rheumatoid arthritis via transdermally-delivered leciplexes: Accentuated efficacy through modulation of angiotensin II/AT1R/AT2R axis","authors":"Amira A. Hussein , Basmah N. Aldosari , Randa M. Zaki , Obaid Afzal , Adel A. Ali , Heba M. Aboud , Yasmin M. Ahmed , Demiana M. Naguib","doi":"10.1016/j.ijpx.2025.100354","DOIUrl":null,"url":null,"abstract":"<div><div>Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory ailment which preferentially impacts the synovial membranes of joints and ultimately triggers cartilage and bone erosion. Angiotensin II (Ang II) participates in the pathogenesis of RA; hence, Ang II receptor blockade, accomplished through a specific inhibitor such as losartan potassium (LST), may confer an effective therapeutic avenue for RA. This study aimed to develop, optimize, and characterize LST-loaded leciplexes (LST-LPXs) to ameliorate its bioavailability and prolong its therapeutic efficacy for combating RA. To accomplish this objective, LST-LPX dispersions were assembled through a single-step process and optimized via D-optimal design for various physicochemical traits employing Design-Expert® software. Also, pharmacokinetic studies were explored in rats. Additionally, in complete Freund's adjuvant-induced RA in Wistar rats, RF, COMP, NADPH oxidase, NO, IL-6, TNF-α, besides Ang II and its receptors (AT1R & AT2R) were measured. The optimum LST-LPXs formulation elicited acceptable entrapment efficiency (88.05%), nano-scaled spherical morphology (246.71 nm), controlled release over 24 h (86.33%), and adequate permeation properties through the skin (417.83 μg/cm<sup>2</sup>). The pharmacokinetic analysis disclosed a snowballed bioavailability of the optimized LST-LPXs gel by 3.08- and 1.2-fold versus the oral solution and crude gel, respectively. The optimum LST-LPXs gel divulged accentuated anti-arthritic effects, evidenced by significant suppression of rheumatoid, oxidative stress, and inflammatory biomarkers coupled with corrections of AT1R and AT2R protein expression. Practically, the current findings proposed a compelling proof-of-principle that the transdermal LST-LPXs could serve as a non-invasive promising nanoparadigm for RA tackling.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"10 ","pages":"Article 100354"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000398","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory ailment which preferentially impacts the synovial membranes of joints and ultimately triggers cartilage and bone erosion. Angiotensin II (Ang II) participates in the pathogenesis of RA; hence, Ang II receptor blockade, accomplished through a specific inhibitor such as losartan potassium (LST), may confer an effective therapeutic avenue for RA. This study aimed to develop, optimize, and characterize LST-loaded leciplexes (LST-LPXs) to ameliorate its bioavailability and prolong its therapeutic efficacy for combating RA. To accomplish this objective, LST-LPX dispersions were assembled through a single-step process and optimized via D-optimal design for various physicochemical traits employing Design-Expert® software. Also, pharmacokinetic studies were explored in rats. Additionally, in complete Freund's adjuvant-induced RA in Wistar rats, RF, COMP, NADPH oxidase, NO, IL-6, TNF-α, besides Ang II and its receptors (AT1R & AT2R) were measured. The optimum LST-LPXs formulation elicited acceptable entrapment efficiency (88.05%), nano-scaled spherical morphology (246.71 nm), controlled release over 24 h (86.33%), and adequate permeation properties through the skin (417.83 μg/cm2). The pharmacokinetic analysis disclosed a snowballed bioavailability of the optimized LST-LPXs gel by 3.08- and 1.2-fold versus the oral solution and crude gel, respectively. The optimum LST-LPXs gel divulged accentuated anti-arthritic effects, evidenced by significant suppression of rheumatoid, oxidative stress, and inflammatory biomarkers coupled with corrections of AT1R and AT2R protein expression. Practically, the current findings proposed a compelling proof-of-principle that the transdermal LST-LPXs could serve as a non-invasive promising nanoparadigm for RA tackling.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.