Salinity-tolerant rice: A sustainable solution for food security and greenhouse gas mitigation

IF 4.5 Q1 PLANT SCIENCES
Mahender Anumalla , Margaret Catolos , Joie Ramos , Ma Tersesa Sta. Cruz , Xiaoli Zhang , Ando Radanielson , Sankalp Bhosale , Benildo G. de los Reyes , Waseem Hussain
{"title":"Salinity-tolerant rice: A sustainable solution for food security and greenhouse gas mitigation","authors":"Mahender Anumalla ,&nbsp;Margaret Catolos ,&nbsp;Joie Ramos ,&nbsp;Ma Tersesa Sta. Cruz ,&nbsp;Xiaoli Zhang ,&nbsp;Ando Radanielson ,&nbsp;Sankalp Bhosale ,&nbsp;Benildo G. de los Reyes ,&nbsp;Waseem Hussain","doi":"10.1016/j.cpb.2025.100518","DOIUrl":null,"url":null,"abstract":"<div><div>Methane (CH₄) emissions pose a significant environmental challenge worldwide. Rice cultivation, reliant on flooded fields, accounts for over 45 % of these emissions. Projections indicate that by 2030, CH₄ emissions from rice are expected to increase by 35–60 %. Effective emission reduction strategies include direct seeded rice (DSR) and alternative wetting and drying (AWD) techniques. This review examines CH₄ emissions in saline rice ecosystems, highlighting substantial evidence that emissions are lower in these environments. We explore the distinctive microbial processes within saline environments that modify molecular and physiological pathways, ultimately inhibiting methanogenic microorganisms and reducing CH₄ emissions. Furthermore, we underscore the remarkable potential of saline ecosystems to enhance food security while curbing CH₄ emissions. We also discuss the urgent need to develop next-generation, salinity-resistant rice varieties using modern tools and technologies that address high-salinity conditions. Conclusively, salinity-tolerant rice offers the dual benefits of increased food security and reduced environmental impact, thereby fostering sustainable agricultural practices in saline ecosystem regions.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"43 ","pages":"Article 100518"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methane (CH₄) emissions pose a significant environmental challenge worldwide. Rice cultivation, reliant on flooded fields, accounts for over 45 % of these emissions. Projections indicate that by 2030, CH₄ emissions from rice are expected to increase by 35–60 %. Effective emission reduction strategies include direct seeded rice (DSR) and alternative wetting and drying (AWD) techniques. This review examines CH₄ emissions in saline rice ecosystems, highlighting substantial evidence that emissions are lower in these environments. We explore the distinctive microbial processes within saline environments that modify molecular and physiological pathways, ultimately inhibiting methanogenic microorganisms and reducing CH₄ emissions. Furthermore, we underscore the remarkable potential of saline ecosystems to enhance food security while curbing CH₄ emissions. We also discuss the urgent need to develop next-generation, salinity-resistant rice varieties using modern tools and technologies that address high-salinity conditions. Conclusively, salinity-tolerant rice offers the dual benefits of increased food security and reduced environmental impact, thereby fostering sustainable agricultural practices in saline ecosystem regions.
耐盐碱水稻:粮食安全和温室气体减排的可持续解决方案
甲烷(CH₄)的排放对全球环境构成了重大挑战。依赖水田的水稻种植占这些排放量的45% %以上。预测表明,到2030年,大米的氯化碳排放量预计将增加35 - 60% %。有效的减排策略包括直接播种水稻(DSR)和替代干湿(AWD)技术。这篇综述研究了盐碱稻生态系统中4氯化甲烷的排放,强调了这些环境中排放量较低的大量证据。我们探索了盐水环境中独特的微生物过程,这些过程可以改变分子和生理途径,最终抑制产甲烷微生物并减少CH₄排放。此外,我们还强调了盐碱化生态系统在加强粮食安全的同时遏制氯化甲烷排放方面的巨大潜力。我们还讨论了利用现代工具和技术开发下一代耐盐水稻品种的迫切需要,以应对高盐条件。最后,耐盐碱水稻提供了增加粮食安全和减少环境影响的双重好处,从而促进了盐碱地生态系统区域的可持续农业做法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信