{"title":"Flight training-induced stage-specific reorganization of the ventral visual network in pilots: evidence from longitudinal and cross-sectional studies","authors":"Shicong Zhang , Xi Chen , Shuqi Guo , Zhuyu Zhang , Peiran Xu , Qingbin Meng , Jiaqi Hao , Qi Chu , Xiuyi Li","doi":"10.1016/j.bandc.2025.106337","DOIUrl":null,"url":null,"abstract":"<div><div>Aviation safety critically depends on pilots’ visual processing abilities. Understanding the plasticity of its neural mechanisms can inform flight training optimization. This study used longitudinal and cross-sectional designs to investigate how long-term flight training affects functional reorganization within the ventral and dorsal visual networks. Multimodal MRI data were collected from 136 participants across two experiments: Experiment 1 (25 flight cadets, 24 controls) and Experiment 2 (48 pilots, 39 controls). Longitudinal analysis showed that cadets exhibited a significant decrease in ventral network clustering coefficient and local efficiency after three years of training (population × time interaction). Cross-sectional results revealed that professional pilots had reduced small-worldness and global efficiency in the ventral network, both negatively correlated with flight hours, while characteristic path length was positively correlated. No significant differences were observed in the dorsal visual network. These findings suggest that flight training induces stage-specific topological remodeling of the ventral visual network, possibly through local pruning and enhanced global integration. Moreover, the ventral network demonstrates greater sensitivity to flight-related experience than the dorsal pathway. This study advances understanding of neural adaptation in aviation and offers insights into stage-specific training strategies for optimizing pilot performance.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"188 ","pages":"Article 106337"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278262625000776","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aviation safety critically depends on pilots’ visual processing abilities. Understanding the plasticity of its neural mechanisms can inform flight training optimization. This study used longitudinal and cross-sectional designs to investigate how long-term flight training affects functional reorganization within the ventral and dorsal visual networks. Multimodal MRI data were collected from 136 participants across two experiments: Experiment 1 (25 flight cadets, 24 controls) and Experiment 2 (48 pilots, 39 controls). Longitudinal analysis showed that cadets exhibited a significant decrease in ventral network clustering coefficient and local efficiency after three years of training (population × time interaction). Cross-sectional results revealed that professional pilots had reduced small-worldness and global efficiency in the ventral network, both negatively correlated with flight hours, while characteristic path length was positively correlated. No significant differences were observed in the dorsal visual network. These findings suggest that flight training induces stage-specific topological remodeling of the ventral visual network, possibly through local pruning and enhanced global integration. Moreover, the ventral network demonstrates greater sensitivity to flight-related experience than the dorsal pathway. This study advances understanding of neural adaptation in aviation and offers insights into stage-specific training strategies for optimizing pilot performance.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.