{"title":"Stirling permutation codes. II","authors":"Shi-Mei Ma , Hao Qi , Jean Yeh , Yeong-Nan Yeh","doi":"10.1016/j.jcta.2025.106093","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of Stirling polynomials, Gessel and Stanley introduced Stirling permutations, which have attracted extensive attention over the past decades. Recently, we introduced Stirling permutation codes and provided numerous equidistribution results as applications. The purpose of the present work is to further analyze Stirling permutation codes. First, we derive an expansion formula expressing the joint distribution of the types <em>A</em> and <em>B</em> descent statistics over the hyperoctahedral group, and we also find an interlacing property involving the zeros of its coefficient polynomials. Next, we prove a strong connection between signed permutations in the hyperoctahedral group and Stirling permutations. We also study unified generalizations of the trivariate second-order Eulerian and ascent-plateau polynomials. Using Stirling permutation codes, we provide expansion formulas for eight-variable and seventeen-variable polynomials, which imply several <em>e</em>-positive expansions and clarify the connection among several statistics. Our results generalize the results of Bóna, Chen-Fu, Dumont, Haglund-Visontai, Janson and Petersen.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106093"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000883","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of Stirling polynomials, Gessel and Stanley introduced Stirling permutations, which have attracted extensive attention over the past decades. Recently, we introduced Stirling permutation codes and provided numerous equidistribution results as applications. The purpose of the present work is to further analyze Stirling permutation codes. First, we derive an expansion formula expressing the joint distribution of the types A and B descent statistics over the hyperoctahedral group, and we also find an interlacing property involving the zeros of its coefficient polynomials. Next, we prove a strong connection between signed permutations in the hyperoctahedral group and Stirling permutations. We also study unified generalizations of the trivariate second-order Eulerian and ascent-plateau polynomials. Using Stirling permutation codes, we provide expansion formulas for eight-variable and seventeen-variable polynomials, which imply several e-positive expansions and clarify the connection among several statistics. Our results generalize the results of Bóna, Chen-Fu, Dumont, Haglund-Visontai, Janson and Petersen.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.