Stirling permutation codes. II

IF 1.2 2区 数学 Q2 MATHEMATICS
Shi-Mei Ma , Hao Qi , Jean Yeh , Yeong-Nan Yeh
{"title":"Stirling permutation codes. II","authors":"Shi-Mei Ma ,&nbsp;Hao Qi ,&nbsp;Jean Yeh ,&nbsp;Yeong-Nan Yeh","doi":"10.1016/j.jcta.2025.106093","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of Stirling polynomials, Gessel and Stanley introduced Stirling permutations, which have attracted extensive attention over the past decades. Recently, we introduced Stirling permutation codes and provided numerous equidistribution results as applications. The purpose of the present work is to further analyze Stirling permutation codes. First, we derive an expansion formula expressing the joint distribution of the types <em>A</em> and <em>B</em> descent statistics over the hyperoctahedral group, and we also find an interlacing property involving the zeros of its coefficient polynomials. Next, we prove a strong connection between signed permutations in the hyperoctahedral group and Stirling permutations. We also study unified generalizations of the trivariate second-order Eulerian and ascent-plateau polynomials. Using Stirling permutation codes, we provide expansion formulas for eight-variable and seventeen-variable polynomials, which imply several <em>e</em>-positive expansions and clarify the connection among several statistics. Our results generalize the results of Bóna, Chen-Fu, Dumont, Haglund-Visontai, Janson and Petersen.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106093"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000883","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of Stirling polynomials, Gessel and Stanley introduced Stirling permutations, which have attracted extensive attention over the past decades. Recently, we introduced Stirling permutation codes and provided numerous equidistribution results as applications. The purpose of the present work is to further analyze Stirling permutation codes. First, we derive an expansion formula expressing the joint distribution of the types A and B descent statistics over the hyperoctahedral group, and we also find an interlacing property involving the zeros of its coefficient polynomials. Next, we prove a strong connection between signed permutations in the hyperoctahedral group and Stirling permutations. We also study unified generalizations of the trivariate second-order Eulerian and ascent-plateau polynomials. Using Stirling permutation codes, we provide expansion formulas for eight-variable and seventeen-variable polynomials, which imply several e-positive expansions and clarify the connection among several statistics. Our results generalize the results of Bóna, Chen-Fu, Dumont, Haglund-Visontai, Janson and Petersen.
斯特林排列码。2
在斯特林多项式的背景下,Gessel和Stanley引入了斯特林排列,在过去的几十年里引起了广泛的关注。近年来,我们引入了Stirling排列码,并提供了大量的等分布结果作为应用。本研究的目的是进一步分析斯特林排列码。首先,我们导出了A型和B型下降统计量在高八面体群上的联合分布的展开式,并得到了涉及其系数多项式零点的交错性质。接下来,我们证明了高八面体群中的符号置换与斯特林置换之间的紧密联系。我们还研究了三元二阶欧拉多项式和上升平台多项式的统一推广。利用Stirling排列码,给出了8变量多项式和17变量多项式的展开式,其中蕴涵了若干e正展开式,并阐明了若干统计量之间的联系。我们的结果推广了Bóna、Chen-Fu、Dumont、Haglund-Visontai、Janson和Petersen的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信