Globally exponentially stable adaptive control of switched linear systems: A memory augmented approach

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Pritesh Patel , Sayan Basu Roy , Shubhendu Bhasin
{"title":"Globally exponentially stable adaptive control of switched linear systems: A memory augmented approach","authors":"Pritesh Patel ,&nbsp;Sayan Basu Roy ,&nbsp;Shubhendu Bhasin","doi":"10.1016/j.nahs.2025.101619","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a switched model reference adaptive control (S-MRAC) architecture for uncertain switched multi-input multi-output (MIMO) linear time-invariant (LTI) systems with a switched reference model. One distinctive aspect of the suggested method is the use of memory to augment the parameter estimator, leading to parameter learning even during inactive periods of the subsystems. Together with an intermittently initial excitation (IIE) condition, the memory augmentation-based approach guarantees exponential stability of the tracking and parameter estimation error systems. An online parameter estimator with a dual-layer low-pass filter and a bank of memory filters is at the heart of the proposed architecture. The addition of the <span><math><mrow><mi>σ</mi><mo>−</mo></mrow></math></span> modification term in adaptive law facilitates the computation of a unified expression of dwell time that is valid for both excitation and non-excitation scenarios. Further, the dwell time expression is tunable and thus, allows for fast switching. Simulation results are showcased to confirm the efficacy of the suggested outcome.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"58 ","pages":"Article 101619"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X25000457","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a switched model reference adaptive control (S-MRAC) architecture for uncertain switched multi-input multi-output (MIMO) linear time-invariant (LTI) systems with a switched reference model. One distinctive aspect of the suggested method is the use of memory to augment the parameter estimator, leading to parameter learning even during inactive periods of the subsystems. Together with an intermittently initial excitation (IIE) condition, the memory augmentation-based approach guarantees exponential stability of the tracking and parameter estimation error systems. An online parameter estimator with a dual-layer low-pass filter and a bank of memory filters is at the heart of the proposed architecture. The addition of the σ modification term in adaptive law facilitates the computation of a unified expression of dwell time that is valid for both excitation and non-excitation scenarios. Further, the dwell time expression is tunable and thus, allows for fast switching. Simulation results are showcased to confirm the efficacy of the suggested outcome.
切换线性系统的全局指数稳定自适应控制:一种记忆增强方法
针对具有切换参考模型的不确定切换多输入多输出(MIMO)线性时不变(LTI)系统,提出了一种切换模型参考自适应控制(S-MRAC)体系结构。所建议的方法的一个独特方面是使用内存来增强参数估计器,即使在子系统的非活动期间也可以进行参数学习。结合间歇性初始激励(IIE)条件,基于记忆增强的方法保证了跟踪和参数估计误差系统的指数稳定性。基于双层低通滤波器和一组内存滤波器的在线参数估计器是该结构的核心。在自适应律中加入σ−修正项,便于计算出适用于激励和非激励情况的停留时间的统一表达式。此外,停留时间表达式是可调的,因此,允许快速切换。仿真结果验证了所提结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信