High energy storage performances in multilayer composites via spatial structure design

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Qixiong Zhang, Zhibiao Zhu, Jiujun Zhu, Hai Jiang, Yafei Hou, Jing Cuan, Weiping Li
{"title":"High energy storage performances in multilayer composites via spatial structure design","authors":"Qixiong Zhang,&nbsp;Zhibiao Zhu,&nbsp;Jiujun Zhu,&nbsp;Hai Jiang,&nbsp;Yafei Hou,&nbsp;Jing Cuan,&nbsp;Weiping Li","doi":"10.1016/j.compscitech.2025.111286","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for renewable energy storage has highlighted the demand of dielectric capacitors with high performances. While multilayer composites show promise by combining insulation layers and polarization layers, their performance optimization remains challenging due to complex layers number and insulation/polarization volume content dependent behaviors. This work presents an optimized multilayer composite via spatial structure design that strategically combines the Ni(OH)<sub>2</sub>@PDI/P(VDF-HFP) (NPP) insulation layers and Ni(OH)<sub>2</sub>/P(VDF-HFP) (NP) polarization layers. Through precise regulation of layers number and NPP volume content within the multilayer composite, the optimized interlayer interfacial effects, the coupling effects of insulation and polarization layers, as well as the related intralayer contributions result in a significantly discharged enhanced energy storage density of 32.1 J/cm<sup>3</sup> and a high charge-discharge efficiency of 80.7 % at 705.7 MV/m for the 4 layers 62.5 vol% NPP/NP composite. Our findings provide both fundamental insights into multilayer dielectric design and a practical strategy for developing high-capacity energy storage dielectrics for renewable energy storage applications.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"270 ","pages":"Article 111286"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825002544","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for renewable energy storage has highlighted the demand of dielectric capacitors with high performances. While multilayer composites show promise by combining insulation layers and polarization layers, their performance optimization remains challenging due to complex layers number and insulation/polarization volume content dependent behaviors. This work presents an optimized multilayer composite via spatial structure design that strategically combines the Ni(OH)2@PDI/P(VDF-HFP) (NPP) insulation layers and Ni(OH)2/P(VDF-HFP) (NP) polarization layers. Through precise regulation of layers number and NPP volume content within the multilayer composite, the optimized interlayer interfacial effects, the coupling effects of insulation and polarization layers, as well as the related intralayer contributions result in a significantly discharged enhanced energy storage density of 32.1 J/cm3 and a high charge-discharge efficiency of 80.7 % at 705.7 MV/m for the 4 layers 62.5 vol% NPP/NP composite. Our findings provide both fundamental insights into multilayer dielectric design and a practical strategy for developing high-capacity energy storage dielectrics for renewable energy storage applications.

Abstract Image

基于空间结构设计的多层复合材料高能量存储性能研究
随着可再生能源存储需求的不断增长,对高性能介质电容器的需求日益突出。虽然多层复合材料结合了绝缘层和极化层,但由于层数和绝缘层/极化体积含量相关的行为复杂,其性能优化仍然具有挑战性。本文通过空间结构设计提出了一种优化的多层复合材料,该复合材料将Ni(OH)2@PDI/P(VDF-HFP) (NPP)绝缘层和Ni(OH)2/P(VDF-HFP) (NP)极化层策略性地结合在一起。通过对多层复合材料层数和NPP体积含量的精确调控,优化后的层间界面效应、绝缘层和极化层的耦合效应以及相关的层内贡献,使4层62.5 vol% NPP/NP复合材料在705.7 MV/m下的储能密度显著增强,储能密度达到32.1 J/cm3,充放电效率高达80.7%。我们的研究结果为多层电介质设计提供了基本见解,并为开发用于可再生能源存储应用的高容量储能电介质提供了实用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信