On exact systems {tα⋅e2πint}n∈Z∖A in L2(0,1) which are weighted lower semi frames but not Schauder bases, and their generalizations

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Elias Zikkos
{"title":"On exact systems {tα⋅e2πint}n∈Z∖A in L2(0,1) which are weighted lower semi frames but not Schauder bases, and their generalizations","authors":"Elias Zikkos","doi":"10.1016/j.acha.2025.101794","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> be an exponential Schauder basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, and let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> be its dual Schauder basis. Let <em>A</em> be a non-empty subset of the integers containing exactly <em>M</em> elements. We prove that for <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> the weighted system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> is exact in the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, that is, it is complete and minimal in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, if and only if <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mi>M</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>M</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. We also show that such a system is not a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div><div>In particular, the weighted trigonometric system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> is exact in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, if and only if <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mi>M</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>M</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>, but this system is not even a Schauder basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This result extends the ones obtained by Heil and Yoon (2012) who considered a similar problem when <em>α</em> is a positive integer.</div><div>The non basicity of <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> in combination with results of Heil et al. (2023), yields that for any <span><math><mi>α</mi><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, the overcomplete system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> does not have a reproducing partner for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Nevertheless this overcomplete system is a weighted lower semi frame for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This follows from recent results of ours, where we proved that any exact system in a Hilbert space <span><math><mi>H</mi></math></span> is a weighted lower semi frame for <span><math><mi>H</mi></math></span>. For the sake of completeness, we reprove here that result.</div><div>We point out that the invertibility of Vandermonde matrices plays a crucial role for the above systems to be exact as well as for their non-basicity.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101794"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032500048X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let {eiλnt}nZ be an exponential Schauder basis for L2(0,1), where λnR, and let {rn(t)}nZ be its dual Schauder basis. Let A be a non-empty subset of the integers containing exactly M elements. We prove that for α>0 the weighted system {tαrn(t)}nZA is exact in the space L2(0,1), that is, it is complete and minimal in L2(0,1), if and only if α[M12,M+12). We also show that such a system is not a Riesz basis for L2(0,1).
In particular, the weighted trigonometric system {tαe2πint}nZA is exact in L2(0,1), if and only if α[M12,M+12), but this system is not even a Schauder basis for L2(0,1). This result extends the ones obtained by Heil and Yoon (2012) who considered a similar problem when α is a positive integer.
The non basicity of {tαe2πint}nZA in combination with results of Heil et al. (2023), yields that for any α1/2, the overcomplete system {tαe2πint}nZ does not have a reproducing partner for L2(0,1). Nevertheless this overcomplete system is a weighted lower semi frame for L2(0,1). This follows from recent results of ours, where we proved that any exact system in a Hilbert space H is a weighted lower semi frame for H. For the sake of completeness, we reprove here that result.
We point out that the invertibility of Vandermonde matrices plays a crucial role for the above systems to be exact as well as for their non-basicity.
关于L2(0,1)中为加权下半坐标系但非Schauder基的精确系统{tα⋅e2πint}n∈Z∈A及其推广
设{eiλnt}n∈Z是L2(0,1)的指数Schauder基,其中λn∈R,设{rn(t)}n∈Z是它的对偶Schauder基。设A是包含M个元素的整数的非空子集。证明了对于α>;0,加权系统{tα⋅rn(t)}n∈Z∈A在L2(0,1)上是精确的,即当且仅当α∈[M−12,M+12]时,它在L2(0,1)上是完备极小的。我们还证明了这样的系统不是L2(0,1)的Riesz基。特别地,当且仅当α∈[M−12,M+12]时,加权三角系统{tα⋅e2πint}n∈Z∈A在L2(0,1)中是精确的,但该系统甚至不是L2(0,1)的Schauder基。这个结果扩展了Heil和Yoon(2012)的结果,他们考虑了α为正整数时的类似问题。{tα⋅e2πint}n∈Z∈A的非碱度结合Heil et al.(2023)的结果,得到对于任意α≥1/2,过完备系统{tα⋅e2πint}n∈Z对于L2(0,1)没有可再生伙伴。然而,这个过完备系统是L2(0,1)的加权下半框架。这是根据我们最近的结果得出的,我们证明了Hilbert空间H中的任何精确系统都是H的加权下半框架。为了完备性,我们在这里重新证明了这个结果。指出Vandermonde矩阵的可逆性对上述系统的精确性和非基性起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信