Rui Zhang , Ren-Jie Yang , Ping-An Zhang , Shao-Ting Wang
{"title":"Pretreat immunosuppressants in whole blood without vortexing and centrifugation","authors":"Rui Zhang , Ren-Jie Yang , Ping-An Zhang , Shao-Ting Wang","doi":"10.1016/j.sampre.2025.100198","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Precise measurement of immunosuppressant levels in whole blood is critical for monitoring post-transplant patient outcomes. Conventional protein precipitation (PP) methods, which rely on vortex mixing and centrifugation, present substantial limitations in terms of automation and scalability. To address these challenges, we developed a novel pretreatment strategy termed “Pseudo-Protein-Precipitation combined with Cold-Induced Phase Separation” (PPP+CIPS), designed to simplify sample processing and enhance high-throughput efficiency.</div></div><div><h3>Results</h3><div>The PPP+CIPS method employs 48 % acetonitrile to generate a semi-homogeneous blood suspension, enabling in-situ drug extraction via CIPS. Notably, this approach eliminates the need for vortexing and centrifugation—key bottlenecks in traditional therapeutic drug monitoring workflows. By leveraging 96-well plates and multi-channel pipettes, the protocol reduces pretreatment time to approximately one-third of that required by PP. Clinical validation (<em>n</em> = 288 in total) revealed strong concordance with established methods, with 94 % of tacrolimus, 95 % of cyclosporin A, and 92 % of sirolimus measurements falling within ±20 % agreement limits.</div></div><div><h3>Significance</h3><div>The PPP+CIPS strategy marks a significant leap forward in high-throughput therapeutic drug monitoring for immunosuppressants. Its seamless integration with 96-well formats and static processing workflows makes it a promising cornerstone for future automated and integrated TDM systems.</div></div>","PeriodicalId":100052,"journal":{"name":"Advances in Sample Preparation","volume":"15 ","pages":"Article 100198"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Sample Preparation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772582025000518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Precise measurement of immunosuppressant levels in whole blood is critical for monitoring post-transplant patient outcomes. Conventional protein precipitation (PP) methods, which rely on vortex mixing and centrifugation, present substantial limitations in terms of automation and scalability. To address these challenges, we developed a novel pretreatment strategy termed “Pseudo-Protein-Precipitation combined with Cold-Induced Phase Separation” (PPP+CIPS), designed to simplify sample processing and enhance high-throughput efficiency.
Results
The PPP+CIPS method employs 48 % acetonitrile to generate a semi-homogeneous blood suspension, enabling in-situ drug extraction via CIPS. Notably, this approach eliminates the need for vortexing and centrifugation—key bottlenecks in traditional therapeutic drug monitoring workflows. By leveraging 96-well plates and multi-channel pipettes, the protocol reduces pretreatment time to approximately one-third of that required by PP. Clinical validation (n = 288 in total) revealed strong concordance with established methods, with 94 % of tacrolimus, 95 % of cyclosporin A, and 92 % of sirolimus measurements falling within ±20 % agreement limits.
Significance
The PPP+CIPS strategy marks a significant leap forward in high-throughput therapeutic drug monitoring for immunosuppressants. Its seamless integration with 96-well formats and static processing workflows makes it a promising cornerstone for future automated and integrated TDM systems.