Exploring pressure induced innovations in the essential physical properties of niobium based perovskite oxides: A first principles analysis

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Shahid Iqbal , Shafaat Hussain Mirza , Muhammad Adnan Samhi , Salah Knani , Amna Parveen
{"title":"Exploring pressure induced innovations in the essential physical properties of niobium based perovskite oxides: A first principles analysis","authors":"Shahid Iqbal ,&nbsp;Shafaat Hussain Mirza ,&nbsp;Muhammad Adnan Samhi ,&nbsp;Salah Knani ,&nbsp;Amna Parveen","doi":"10.1016/j.chemphys.2025.112855","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite oxides particularly ZNbO₃ (Z = Na, K), are promising candidates due to their tunable optoelectronic properties. Analysis of the electronic band structure reveals that both compounds exhibit indirect bandgaps, which expand from 1.284 eV to 1.830 eV for NaNbO<sub>3</sub> and from 1.489 eV to 1.814 eV for KNbO<sub>3</sub> as pressure rises from 0 to 50 GPa. Optical properties reveal notable absorption in the UV region, improved reflectivity peaks, and robust optical conductivity. Powder XRD patterns manifest peak shifts towards higher angles with rising pressure, showing the lattice compression and improved crystalline quality, notably in KNbO<sub>3</sub>. According to Pugh's and Poisson's ratio investigations, the materials exhibit anisotropic behavior and predominantly ductile characteristics. Thermodynamic properties of ZNbO<sub>3</sub> (Z = Na, K) are also evaluated to check these materials dynamical stability and appropriateness in thermal applications. As a result, the ZNbO<sub>3</sub> (Z = Na, K) perovskites exhibit suitability broadly tunable phosphor materials for energy-efficient white LED devices.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"598 ","pages":"Article 112855"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002563","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite oxides particularly ZNbO₃ (Z = Na, K), are promising candidates due to their tunable optoelectronic properties. Analysis of the electronic band structure reveals that both compounds exhibit indirect bandgaps, which expand from 1.284 eV to 1.830 eV for NaNbO3 and from 1.489 eV to 1.814 eV for KNbO3 as pressure rises from 0 to 50 GPa. Optical properties reveal notable absorption in the UV region, improved reflectivity peaks, and robust optical conductivity. Powder XRD patterns manifest peak shifts towards higher angles with rising pressure, showing the lattice compression and improved crystalline quality, notably in KNbO3. According to Pugh's and Poisson's ratio investigations, the materials exhibit anisotropic behavior and predominantly ductile characteristics. Thermodynamic properties of ZNbO3 (Z = Na, K) are also evaluated to check these materials dynamical stability and appropriateness in thermal applications. As a result, the ZNbO3 (Z = Na, K) perovskites exhibit suitability broadly tunable phosphor materials for energy-efficient white LED devices.
探索压力诱导的铌基钙钛矿氧化物基本物理性质的创新:第一性原理分析
钙钛矿氧化物,特别是ZNbO₃(Z = Na, K),由于其可调谐的光电特性,是有希望的候选者。电子能带结构分析表明,两种化合物都表现出间接带隙,当压力从0到50 GPa时,NaNbO3的带隙从1.284 eV扩大到1.830 eV, KNbO3的带隙从1.489 eV扩大到1.814 eV。光学性能显示在紫外区显著的吸收,改善的反射率峰,和强大的光学导电性。粉末XRD谱图显示,随着压力的升高,峰移向更高的角度,表明晶格压缩和晶体质量的改善,特别是在KNbO3中。根据皮尤比和泊松比的研究,材料表现出各向异性行为和主要的延性特征。还对ZNbO3 (Z = Na, K)的热力学性质进行了评价,以检查这些材料的动态稳定性和热应用的适宜性。结果表明,ZNbO3 (Z = Na, K)钙钛矿具有广泛可调的荧光粉材料,适用于高能效白光LED器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信