Sabrina Altendorf,Marta Bertolini,Alizée Le Riche,Antonella Tosti,Ralf Paus
{"title":"Frontiers in the physiology of male pattern androgenetic alopecia: Beyond the androgen horizon.","authors":"Sabrina Altendorf,Marta Bertolini,Alizée Le Riche,Antonella Tosti,Ralf Paus","doi":"10.1152/physrev.00005.2024","DOIUrl":null,"url":null,"abstract":"Male pattern androgenetic alopecia (mpAGA), the most common form of hair loss in men, represents a heritable, androgen-dependent complex trait distinct from female pattern hair loss. Despite the psychosocial burden of mpAGA in some affected individuals and associations with other morbidities, we portray mpAGA as an essentially physiological phenomenon in which defined hair follicle (HF) populations in developmentally preprogrammed scalp skin regions undergo a dramatic, but reversible (mini-)organ transformation in genetically predisposed individuals. Histologically, mpAGA exhibits progressive HF miniaturization (terminal-to-vellus conversion) and anagen shortening. Clinically, this results in a characteristic balding pattern of frontotemporal and vertex scalp skin, associated with telogen effluvium. It remains unclear how exactly androgens induce this phenotype, since neither androgen receptor polymorphisms nor changes in androgen serum or local androgen skin levels persuasively explain it. It also is as yet unresolved if mpAGA-associated HF transformation and hair cycle changes are primarily driven by the HF mesenchyme, e.g. by excessive emigration and/or reduced inductive potential of dermal papilla fibroblasts, or by intraepithelial events such as prostaglandin D2-dependent reduced HF epithelial stem cell progenitor generation. While critically revisiting our limited current understanding of mpAGA physiology and the role of mpAGA-associated genes we discuss potential targets for future therapeutic intervention beyond androgens and highlight selected dysregulated signaling pathways in mpAGA. We underscore mpAGA as an instructive, accessible model for interrogating under-investigated physiological roles of immune cells, oxidative stress, aging/senescence, and the microbiome in human organ remodeling and hair cycle regulation, and define major open research questions beyond androgen receptor- mediated signaling.","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"111 1","pages":""},"PeriodicalIF":28.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00005.2024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Male pattern androgenetic alopecia (mpAGA), the most common form of hair loss in men, represents a heritable, androgen-dependent complex trait distinct from female pattern hair loss. Despite the psychosocial burden of mpAGA in some affected individuals and associations with other morbidities, we portray mpAGA as an essentially physiological phenomenon in which defined hair follicle (HF) populations in developmentally preprogrammed scalp skin regions undergo a dramatic, but reversible (mini-)organ transformation in genetically predisposed individuals. Histologically, mpAGA exhibits progressive HF miniaturization (terminal-to-vellus conversion) and anagen shortening. Clinically, this results in a characteristic balding pattern of frontotemporal and vertex scalp skin, associated with telogen effluvium. It remains unclear how exactly androgens induce this phenotype, since neither androgen receptor polymorphisms nor changes in androgen serum or local androgen skin levels persuasively explain it. It also is as yet unresolved if mpAGA-associated HF transformation and hair cycle changes are primarily driven by the HF mesenchyme, e.g. by excessive emigration and/or reduced inductive potential of dermal papilla fibroblasts, or by intraepithelial events such as prostaglandin D2-dependent reduced HF epithelial stem cell progenitor generation. While critically revisiting our limited current understanding of mpAGA physiology and the role of mpAGA-associated genes we discuss potential targets for future therapeutic intervention beyond androgens and highlight selected dysregulated signaling pathways in mpAGA. We underscore mpAGA as an instructive, accessible model for interrogating under-investigated physiological roles of immune cells, oxidative stress, aging/senescence, and the microbiome in human organ remodeling and hair cycle regulation, and define major open research questions beyond androgen receptor- mediated signaling.
期刊介绍:
Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.