In-Situ Atomic-Scale Revelation of Amorphous Metallic Iron Formation during Hydrogen-Driven Reduction of Iron Oxides

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhikang Zhou, Yupeng Wu, Wenhui Zhu, Linna Qiao, Shuonan Ye, Xiaobo Chen, Meng Li, Dmitri N. Zakharov, Renu Sharma, Judith C. Yang, Mengen Wang and Guangwen Zhou*, 
{"title":"In-Situ Atomic-Scale Revelation of Amorphous Metallic Iron Formation during Hydrogen-Driven Reduction of Iron Oxides","authors":"Zhikang Zhou,&nbsp;Yupeng Wu,&nbsp;Wenhui Zhu,&nbsp;Linna Qiao,&nbsp;Shuonan Ye,&nbsp;Xiaobo Chen,&nbsp;Meng Li,&nbsp;Dmitri N. Zakharov,&nbsp;Renu Sharma,&nbsp;Judith C. Yang,&nbsp;Mengen Wang and Guangwen Zhou*,&nbsp;","doi":"10.1021/acsami.5c06886","DOIUrl":null,"url":null,"abstract":"<p >The transition to hydrogen as a green reductant in metal production is critical for decarbonizing the metallurgical industry, yet atomic-scale mechanisms governing reduction pathways and phase evolution remain unresolved. Using in situ environmental transmission electron microscopy, we identify a hidden pathway that reveals dynamic formation of amorphous metallic iron (Fe) during the hydrogen-driven reduction of ferrous oxides of Fe<sub>3</sub>O<sub>4</sub> and FeO. Real-time imaging uncovers three coexisting transformation routes: (i) Fe<sub>3</sub>O<sub>4</sub> → FeO, (ii) Fe<sub>3</sub>O<sub>4</sub> → amorphous Fe, and (iii) FeO → amorphous Fe. The resulting amorphous Fe exhibits fluid-like mobility, enabling its rapid aggregation and crystallization into core–shell nanostructures, with a crystalline core enveloped by an amorphous shell. Complementary ab initio molecular dynamics simulations trace the amorphous Fe formation to interfacial strain at the metal/oxide interfaces, where large lattice mismatches destabilize the metal lattice during initial metallization. This interplay between thermodynamics and kinetics governs phase evolution: thermodynamics favors a self-limiting amorphous Fe overlayer, while rapid oxide reduction kinetics drives amorphous overgrowth. Our findings demonstrate that amorphous intermediates bypass rate-limiting crystalline steps, providing mechanistic insights to optimize H<sub>2</sub>-based processes for sustainable steelmaking. These insights bridge the gap between macroscopic process engineering and atomic-scale dynamics, with broader implications for catalysis and nanostructured material synthesis, where oxide reduction pathways critically shape functional phases and microstructures.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 29","pages":"42380–42393"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c06886","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to hydrogen as a green reductant in metal production is critical for decarbonizing the metallurgical industry, yet atomic-scale mechanisms governing reduction pathways and phase evolution remain unresolved. Using in situ environmental transmission electron microscopy, we identify a hidden pathway that reveals dynamic formation of amorphous metallic iron (Fe) during the hydrogen-driven reduction of ferrous oxides of Fe3O4 and FeO. Real-time imaging uncovers three coexisting transformation routes: (i) Fe3O4 → FeO, (ii) Fe3O4 → amorphous Fe, and (iii) FeO → amorphous Fe. The resulting amorphous Fe exhibits fluid-like mobility, enabling its rapid aggregation and crystallization into core–shell nanostructures, with a crystalline core enveloped by an amorphous shell. Complementary ab initio molecular dynamics simulations trace the amorphous Fe formation to interfacial strain at the metal/oxide interfaces, where large lattice mismatches destabilize the metal lattice during initial metallization. This interplay between thermodynamics and kinetics governs phase evolution: thermodynamics favors a self-limiting amorphous Fe overlayer, while rapid oxide reduction kinetics drives amorphous overgrowth. Our findings demonstrate that amorphous intermediates bypass rate-limiting crystalline steps, providing mechanistic insights to optimize H2-based processes for sustainable steelmaking. These insights bridge the gap between macroscopic process engineering and atomic-scale dynamics, with broader implications for catalysis and nanostructured material synthesis, where oxide reduction pathways critically shape functional phases and microstructures.

Abstract Image

氢驱动氧化铁还原过程中非晶态金属铁形成的原位原子尺度揭示。
在金属生产中向氢作为绿色还原剂的过渡对冶金工业脱碳至关重要,但控制还原途径和相演变的原子尺度机制仍未解决。利用原位环境透射电子显微镜,我们发现了一个隐藏的途径,揭示了氢驱动还原Fe3O4和FeO的亚铁氧化物过程中非晶态金属铁(Fe)的动态形成。实时成像揭示了三种共存的转变路径:(i) Fe3O4→FeO, (ii) Fe3O4→非晶态铁,(iii) FeO→非晶态铁。得到的非晶态铁表现出类似流体的流动性,使其能够快速聚集和结晶成核-壳纳米结构,晶体核被非晶态壳包裹。互补从头算分子动力学模拟将非晶态铁的形成归因于金属/氧化物界面的界面应变,在初始金属化过程中,大晶格不匹配使金属晶格不稳定。热力学和动力学之间的相互作用决定了相的演化:热力学有利于自我限制的非晶态铁覆盖层,而快速的氧化物还原动力学驱动非晶态过度生长。我们的研究结果表明,非晶中间体绕过限制速率的结晶步骤,为优化基于h2的可持续炼钢工艺提供了机制见解。这些见解弥合了宏观工艺工程和原子尺度动力学之间的差距,对催化和纳米结构材料合成具有更广泛的意义,其中氧化物还原途径对功能相和微观结构具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信