Shunfa Liu, Yangpeng Wang, Yasser Saleem, Xueshi Li, Hanqing Liu, Cheng-Ao Yang, Jiawei Yang, Haiqiao Ni, Zhichuan Niu, Yun Meng, Xiaolong Hu, Ying Yu, Xuehua Wang, Moritz Cygorek, Jin Liu
{"title":"Quantum correlations of spontaneous two-photon emission from a quantum dot","authors":"Shunfa Liu, Yangpeng Wang, Yasser Saleem, Xueshi Li, Hanqing Liu, Cheng-Ao Yang, Jiawei Yang, Haiqiao Ni, Zhichuan Niu, Yun Meng, Xiaolong Hu, Ying Yu, Xuehua Wang, Moritz Cygorek, Jin Liu","doi":"10.1038/s41586-025-09267-6","DOIUrl":null,"url":null,"abstract":"Spontaneous two-photon emission (STPE) is a second-order quantum radiation process with implications in astrophysics1, atomic physics2 and quantum technology3. In particular, on-demand STPE from single quantum emitters has long been predicted to revolutionize photonic quantum science and technology4,5. Here we report STPE with brightness comparable to that of competing single-photon radiation from a single semiconductor quantum dot deterministically coupled to a high-quality micropillar cavity. This is because of strong vacuum fluctuations in the microcavity, which drive a biexciton directly to the ground state. We show the quantum nature associated with STPE in the cavity quantum electrodynamics regime using photon statistics measurements. Furthermore, STPE is exploited to build unconventional entangled quantum light sources that can simultaneously achieve near-unity entanglement fidelity for spontaneous parametric down-conversion sources and on-demand photon emission for atomic quantum emitters. Our work provides insights into the two-photon process in the quantum regime, which could empower photonic quantum technology with nonlinear quantum radiation. Quantum correlations of spontaneous two-photon emission emitted from a bright quantum dot device are revealed, facilitating the creation of entangled photons with near-unity fidelity.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"643 8074","pages":"1234-1239"},"PeriodicalIF":48.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09267-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spontaneous two-photon emission (STPE) is a second-order quantum radiation process with implications in astrophysics1, atomic physics2 and quantum technology3. In particular, on-demand STPE from single quantum emitters has long been predicted to revolutionize photonic quantum science and technology4,5. Here we report STPE with brightness comparable to that of competing single-photon radiation from a single semiconductor quantum dot deterministically coupled to a high-quality micropillar cavity. This is because of strong vacuum fluctuations in the microcavity, which drive a biexciton directly to the ground state. We show the quantum nature associated with STPE in the cavity quantum electrodynamics regime using photon statistics measurements. Furthermore, STPE is exploited to build unconventional entangled quantum light sources that can simultaneously achieve near-unity entanglement fidelity for spontaneous parametric down-conversion sources and on-demand photon emission for atomic quantum emitters. Our work provides insights into the two-photon process in the quantum regime, which could empower photonic quantum technology with nonlinear quantum radiation. Quantum correlations of spontaneous two-photon emission emitted from a bright quantum dot device are revealed, facilitating the creation of entangled photons with near-unity fidelity.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.