The role of metabolism in shaping enzyme structures over 400 million years

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-07-09 DOI:10.1038/s41586-025-09205-6
Oliver Lemke, Benjamin Murray Heineike, Sandra Viknander, Nir Cohen, Feiran Li, Jacob Lucas Steenwyk, Leonard Spranger, Federica Agostini, Cory Thomas Lee, Simran Kaur Aulakh, Judith Berman, Antonis Rokas, Jens Nielsen, Toni Ingolf Gossmann, Aleksej Zelezniak, Markus Ralser
{"title":"The role of metabolism in shaping enzyme structures over 400 million years","authors":"Oliver Lemke, Benjamin Murray Heineike, Sandra Viknander, Nir Cohen, Feiran Li, Jacob Lucas Steenwyk, Leonard Spranger, Federica Agostini, Cory Thomas Lee, Simran Kaur Aulakh, Judith Berman, Antonis Rokas, Jens Nielsen, Toni Ingolf Gossmann, Aleksej Zelezniak, Markus Ralser","doi":"10.1038/s41586-025-09205-6","DOIUrl":null,"url":null,"abstract":"<p>Advances in deep learning and AlphaFold2 have enabled the large-scale prediction of protein structures across species, opening avenues for studying protein function and evolution<sup>1</sup>. Here we analyse 11,269 predicted and experimentally determined enzyme structures that catalyse 361 metabolic reactions across 225 pathways to investigate metabolic evolution over 400 million years in the Saccharomycotina subphylum<sup>2</sup>. By linking sequence divergence in structurally conserved regions to a variety of metabolic properties of the enzymes, we reveal that metabolism shapes structural evolution across multiple scales, from species-wide metabolic specialization to network organization and the molecular properties of the enzymes. Although positively selected residues are distributed across various structural elements, enzyme evolution is constrained by reaction mechanisms, interactions with metal ions and inhibitors, metabolic flux variability and biosynthetic cost. Our findings uncover hierarchical patterns of structural evolution, in which structural context dictates amino acid substitution rates, with surface residues evolving most rapidly and small-molecule-binding sites evolving under selective constraints without cost optimization. By integrating structural biology with evolutionary genomics, we establish a model in which enzyme evolution is intrinsically governed by catalytic function and shaped by metabolic niche, network architecture, cost and molecular interactions.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"47 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09205-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in deep learning and AlphaFold2 have enabled the large-scale prediction of protein structures across species, opening avenues for studying protein function and evolution1. Here we analyse 11,269 predicted and experimentally determined enzyme structures that catalyse 361 metabolic reactions across 225 pathways to investigate metabolic evolution over 400 million years in the Saccharomycotina subphylum2. By linking sequence divergence in structurally conserved regions to a variety of metabolic properties of the enzymes, we reveal that metabolism shapes structural evolution across multiple scales, from species-wide metabolic specialization to network organization and the molecular properties of the enzymes. Although positively selected residues are distributed across various structural elements, enzyme evolution is constrained by reaction mechanisms, interactions with metal ions and inhibitors, metabolic flux variability and biosynthetic cost. Our findings uncover hierarchical patterns of structural evolution, in which structural context dictates amino acid substitution rates, with surface residues evolving most rapidly and small-molecule-binding sites evolving under selective constraints without cost optimization. By integrating structural biology with evolutionary genomics, we establish a model in which enzyme evolution is intrinsically governed by catalytic function and shaped by metabolic niche, network architecture, cost and molecular interactions.

Abstract Image

4亿多年来,代谢在形成酶结构中的作用
深度学习和AlphaFold2的进步使跨物种蛋白质结构的大规模预测成为可能,为研究蛋白质功能和进化开辟了途径1。在这里,我们分析了11,269种预测和实验确定的酶结构,这些酶结构催化225种途径的361种代谢反应,以研究酵母亚门4亿年的代谢进化。通过将结构保守区域的序列分化与酶的各种代谢特性联系起来,我们揭示了代谢在多个尺度上塑造了结构进化,从物种范围的代谢特化到网络组织和酶的分子特性。虽然正选择残基分布在各种结构元件中,但酶的进化受到反应机制、与金属离子和抑制剂的相互作用、代谢通量变异性和生物合成成本的限制。我们的发现揭示了结构进化的层次模式,其中结构背景决定了氨基酸取代率,表面残基进化最快,小分子结合位点在没有成本优化的选择约束下进化。通过将结构生物学与进化基因组学相结合,我们建立了一个模型,在这个模型中,酶的进化本质上是由催化功能控制的,并由代谢生态位、网络结构、成本和分子相互作用形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信