Shuying He, Pin Lyu, Marnie W. Skinner, Anthony Desotell, Brendan Foley, Chance M. McCaig, Wei Wang, Jiang Qian, Liang Tong, William F. Marzluff, Michael J. Matunis
{"title":"SUMO2 promotes histone pre-mRNA processing by stabilizing histone locus body interactions and facilitating U7 snRNP assembly","authors":"Shuying He, Pin Lyu, Marnie W. Skinner, Anthony Desotell, Brendan Foley, Chance M. McCaig, Wei Wang, Jiang Qian, Liang Tong, William F. Marzluff, Michael J. Matunis","doi":"10.1101/gad.352728.125","DOIUrl":null,"url":null,"abstract":"Histone mRNAs are the only nonpolyadenylated mRNAs in eukaryotic cells and require specialized processing in the histone locus body (HLB), a nuclear body where essential processing factors, including the U7 snRNP, are concentrated. Recent studies have revealed that misregulation of histone pre-mRNA processing can lead to polyadenylation of histone mRNAs and disruption of histone protein homeostasis. Despite links to human disease, the factors contributing to polyadenylation of histone mRNAs and the mechanisms underlying HLB assembly and U7 snRNP biogenesis remain unclear. Here, we report novel functions of the small ubiquitin-related modifier 2 (SUMO2) in promoting histone pre-mRNA processing. Using a SUMO2 knockout osteosarcoma cell line, we identified a defect in 3′ end cleavage and a global increase in histone mRNA polyadenylation. Subsequent analysis of HLBs revealed increased dynamics and reduced levels of the U7 snRNP complex. By overexpressing the U7 snRNP-specific components Lsm11 and U7 snRNA, we rescued U7 snRNP levels and processing defects in SUMO2 knockout cells. Through analysis of Lsm11, we identified a SUMO-interacting motif in its N terminus required for efficient formation of U7 snRNP. Collectively, we demonstrated that SUMO2 promotes histone pre-mRNA 3′ end processing by stabilizing HLB interactions and facilitating U7 snRNP assembly.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"93 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352728.125","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone mRNAs are the only nonpolyadenylated mRNAs in eukaryotic cells and require specialized processing in the histone locus body (HLB), a nuclear body where essential processing factors, including the U7 snRNP, are concentrated. Recent studies have revealed that misregulation of histone pre-mRNA processing can lead to polyadenylation of histone mRNAs and disruption of histone protein homeostasis. Despite links to human disease, the factors contributing to polyadenylation of histone mRNAs and the mechanisms underlying HLB assembly and U7 snRNP biogenesis remain unclear. Here, we report novel functions of the small ubiquitin-related modifier 2 (SUMO2) in promoting histone pre-mRNA processing. Using a SUMO2 knockout osteosarcoma cell line, we identified a defect in 3′ end cleavage and a global increase in histone mRNA polyadenylation. Subsequent analysis of HLBs revealed increased dynamics and reduced levels of the U7 snRNP complex. By overexpressing the U7 snRNP-specific components Lsm11 and U7 snRNA, we rescued U7 snRNP levels and processing defects in SUMO2 knockout cells. Through analysis of Lsm11, we identified a SUMO-interacting motif in its N terminus required for efficient formation of U7 snRNP. Collectively, we demonstrated that SUMO2 promotes histone pre-mRNA 3′ end processing by stabilizing HLB interactions and facilitating U7 snRNP assembly.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).