Ultrasensitive Vector Displacement Measurement Based on Pancharatnam‐Berry Phase Optical Element

IF 10 1区 物理与天体物理 Q1 OPTICS
Yingjie Shang, Siyuan Qiao, Yinghui Guo, Qi Zhang, Mingbo Pu, Xiaoyin Li, Hengshuo Guo, Fei Zhang, Mingfeng Xu, Xiangang Luo
{"title":"Ultrasensitive Vector Displacement Measurement Based on Pancharatnam‐Berry Phase Optical Element","authors":"Yingjie Shang, Siyuan Qiao, Yinghui Guo, Qi Zhang, Mingbo Pu, Xiaoyin Li, Hengshuo Guo, Fei Zhang, Mingfeng Xu, Xiangang Luo","doi":"10.1002/lpor.202500741","DOIUrl":null,"url":null,"abstract":"Precise transverse displacement metrology is essential for super‐resolution microscopy, precision engineering, and semiconductor manufacturing. Conventional methods encounter challenges related to miniaturization, complexity, and sensitivity to transverse motion. Metasurface‐based methods achieve nanometric resolution but are hindered by fabrication complexity, limited dynamic range, and ambiguity in absolute displacement measurement. An ultrasensitive vector displacement sensor utilizing liquid crystal optical elements (LCOE) under vector beam illumination is presented. By mapping the transverse displacement to the polarization change of a radial vector beam, the displacement length can be directly inferred using Malus' law, and the displacement direction can be easily determined from the rotation of the vector beam speckle. Remarkably, uncertainties of 47 and 55 pm are achieved over centimeter‐scale ranges, with step sizes of 10 and 5 nm, respectively. This method combines nanometric resolution, an extended dynamic range, and compactness, providing innovative metrological principles for next‐generation precision measurement applications. The integration of LCOEs and vector beams enables absolute displacement measurement without the need for complex nanofabrication, overcoming critical limitations of current technologies.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"690 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500741","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Precise transverse displacement metrology is essential for super‐resolution microscopy, precision engineering, and semiconductor manufacturing. Conventional methods encounter challenges related to miniaturization, complexity, and sensitivity to transverse motion. Metasurface‐based methods achieve nanometric resolution but are hindered by fabrication complexity, limited dynamic range, and ambiguity in absolute displacement measurement. An ultrasensitive vector displacement sensor utilizing liquid crystal optical elements (LCOE) under vector beam illumination is presented. By mapping the transverse displacement to the polarization change of a radial vector beam, the displacement length can be directly inferred using Malus' law, and the displacement direction can be easily determined from the rotation of the vector beam speckle. Remarkably, uncertainties of 47 and 55 pm are achieved over centimeter‐scale ranges, with step sizes of 10 and 5 nm, respectively. This method combines nanometric resolution, an extended dynamic range, and compactness, providing innovative metrological principles for next‐generation precision measurement applications. The integration of LCOEs and vector beams enables absolute displacement measurement without the need for complex nanofabrication, overcoming critical limitations of current technologies.
基于Pancharatnam - Berry相位光学元件的超灵敏矢量位移测量
精确的横向位移测量对于超分辨率显微镜、精密工程和半导体制造至关重要。传统的方法面临着小型化、复杂性和横向运动敏感性的挑战。基于超表面的方法实现了纳米分辨率,但由于制造复杂性、有限的动态范围和绝对位移测量的模糊性而受到阻碍。提出了一种利用液晶光学元件(LCOE)实现矢量光束照明的超灵敏矢量位移传感器。通过将横向位移映射到径向矢量光束的偏振变化,可以利用Malus定律直接推断位移长度,并且可以很容易地从矢量光束散斑的旋转中确定位移方向。值得注意的是,在厘米尺度范围内,不确定度分别为47 pm和55 pm,步长分别为10 nm和5 nm。这种方法结合了纳米分辨率,扩展的动态范围和紧凑性,为下一代精密测量应用提供了创新的计量原理。lcoe和矢量光束的集成使绝对位移测量不需要复杂的纳米加工,克服了当前技术的关键限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信