De-en Sun, Siu Wang Ng, Yu Zheng, Shu Xie, Niklas Schwan, Paula Breuer, Dirk C. Hoffmann, Julius Michel, Daniel D. Azorin, Kim E. Boonekamp, Frank Winkler, Wolfgang Wick, Michael Boutros, Yulong Li, Kai Johnsson
{"title":"Molecular recording of cellular protein kinase activity with chemical labeling","authors":"De-en Sun, Siu Wang Ng, Yu Zheng, Shu Xie, Niklas Schwan, Paula Breuer, Dirk C. Hoffmann, Julius Michel, Daniel D. Azorin, Kim E. Boonekamp, Frank Winkler, Wolfgang Wick, Michael Boutros, Yulong Li, Kai Johnsson","doi":"10.1038/s41589-025-01949-6","DOIUrl":null,"url":null,"abstract":"<p>Protein kinases control most cellular processes and aberrant kinase activity is involved in numerous diseases. Here we introduce molecular recorders of kinase activities for later analysis to investigate the link between specific kinase activities and cellular phenotypes in heterogeneous cell populations and in vivo. Based on split-HaloTag and a phosphorylation-dependent molecular switch, our recorders become rapidly labeled in the presence of a specific kinase activity and a fluorescent HaloTag substrate. The kinase activity in a given cell controls the degree of fluorescent labeling, whereas the recording window is set by the presence of the fluorescent substrate. We designed specific recorders for four protein kinases, including protein kinase A. We apply our protein kinase A recorder to sort heterogeneous cell populations for subsequent transcriptome analysis, in genome-wide CRISPR screens to discover regulators of PKA activity and to track neuromodulation in freely moving mice.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"107 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01949-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein kinases control most cellular processes and aberrant kinase activity is involved in numerous diseases. Here we introduce molecular recorders of kinase activities for later analysis to investigate the link between specific kinase activities and cellular phenotypes in heterogeneous cell populations and in vivo. Based on split-HaloTag and a phosphorylation-dependent molecular switch, our recorders become rapidly labeled in the presence of a specific kinase activity and a fluorescent HaloTag substrate. The kinase activity in a given cell controls the degree of fluorescent labeling, whereas the recording window is set by the presence of the fluorescent substrate. We designed specific recorders for four protein kinases, including protein kinase A. We apply our protein kinase A recorder to sort heterogeneous cell populations for subsequent transcriptome analysis, in genome-wide CRISPR screens to discover regulators of PKA activity and to track neuromodulation in freely moving mice.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.