Deep Learning of Suboptimal Spirometry to Predict Respiratory Outcomes and Mortality.

Michael Cho, Davin Hill, Max Torop, Aria Masoomi, Peter Castaldi, Edwin Silverman, Sandeep Bodduluri, Surya Bhatt, Taedong Yun, Cory McLean, Farhad Hormozdiari, Jennifer Dy, Brian Hobbs
{"title":"Deep Learning of Suboptimal Spirometry to Predict Respiratory Outcomes and Mortality.","authors":"Michael Cho, Davin Hill, Max Torop, Aria Masoomi, Peter Castaldi, Edwin Silverman, Sandeep Bodduluri, Surya Bhatt, Taedong Yun, Cory McLean, Farhad Hormozdiari, Jennifer Dy, Brian Hobbs","doi":"10.21203/rs.3.rs-6296752/v1","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>Obtaining spirometry requires repeated testing and using the maximal values based on quality control criteria. Whether the suboptimal efforts are useful for the prediction of respiratory outcomes is not clear.</p><p><strong>Objective: </strong>To determine whether a machine learning model could predict respiratory outcomes and mortality based on suboptimal spirometry.</p><p><strong>Design: </strong>Observational cohorts (UK Biobank and COPDGene).</p><p><strong>Setting: </strong>Multi-center; population, and disease-enriched.</p><p><strong>Participants: </strong>UK aged 40-69; US aged 45-80, >10 pack-years smoking, without respiratory diseases other than COPD or asthma.</p><p><strong>Exposures: </strong>Raw spirograms (volume-time).</p><p><strong>Main outcomes and measures: </strong>To create a combined representation of lung function we implemented a contrastive learning approach, Spirogram-based Contrastive Learning Framework (Spiro-CLF), which utilized all recorded volume-time curves per participant and applied different transformations (e.g. flow-volume, flow-time). We defined \"maximal\" efforts as those passing quality control (QC) with the maximum FVC; all other efforts, including submaximal and QC-failing efforts, were defined as \"suboptimal\". We trained the Spiro-CLF model using both maximal and suboptimal efforts from the UK Biobank. We tested the model in a held-out 20% testing UK Biobank subset and COPDGene, on 1) binary predictions of FEV1/FVC <0.7, and FEV1 Percent Predicted (FEV1PP) <80%, 2) Cox regression for all-cause mortality, and 3) prediction of respiratory phenotypes.</p><p><strong>Results: </strong>We trained Spiro-CLF on 940,705 volume-time curves from 352,684 UKB participants with 2-3 spirometry efforts per individual (66.7% with 3 efforts) and at least one QC-passing spirometry effort. Of all spirometry efforts, 61.6% were suboptimal (37.5% submaximal and 24.1% QC-failing). In the UK Biobank, Spiro-CLF using QC-failing and submaximal efforts predicted FEV1/FVC < 0.7 with an Area under the Receiver Operating Characteristics (AUROC) of 0.956, mortality with a concordance index of 0.647, and asthma with a 9-42% improvement versus baseline models. In COPDGene (n=10,110 participants), adding QC-passing, submaximal efforts did not improve the prediction of lung function or mortality; however, Spiro-CLF representations predicted asthma and respiratory phenotypes (joint test P ≤ 2 × 10-3).</p><p><strong>Conclusions and relevance: </strong>A machine-learning model can predict respiratory phenotypes using suboptimal spirometry; results from all spirometry efforts may contain valuable data. Additional studies are required to determine performance and utility in specific clinical scenarios.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236919/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6296752/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Importance: Obtaining spirometry requires repeated testing and using the maximal values based on quality control criteria. Whether the suboptimal efforts are useful for the prediction of respiratory outcomes is not clear.

Objective: To determine whether a machine learning model could predict respiratory outcomes and mortality based on suboptimal spirometry.

Design: Observational cohorts (UK Biobank and COPDGene).

Setting: Multi-center; population, and disease-enriched.

Participants: UK aged 40-69; US aged 45-80, >10 pack-years smoking, without respiratory diseases other than COPD or asthma.

Exposures: Raw spirograms (volume-time).

Main outcomes and measures: To create a combined representation of lung function we implemented a contrastive learning approach, Spirogram-based Contrastive Learning Framework (Spiro-CLF), which utilized all recorded volume-time curves per participant and applied different transformations (e.g. flow-volume, flow-time). We defined "maximal" efforts as those passing quality control (QC) with the maximum FVC; all other efforts, including submaximal and QC-failing efforts, were defined as "suboptimal". We trained the Spiro-CLF model using both maximal and suboptimal efforts from the UK Biobank. We tested the model in a held-out 20% testing UK Biobank subset and COPDGene, on 1) binary predictions of FEV1/FVC <0.7, and FEV1 Percent Predicted (FEV1PP) <80%, 2) Cox regression for all-cause mortality, and 3) prediction of respiratory phenotypes.

Results: We trained Spiro-CLF on 940,705 volume-time curves from 352,684 UKB participants with 2-3 spirometry efforts per individual (66.7% with 3 efforts) and at least one QC-passing spirometry effort. Of all spirometry efforts, 61.6% were suboptimal (37.5% submaximal and 24.1% QC-failing). In the UK Biobank, Spiro-CLF using QC-failing and submaximal efforts predicted FEV1/FVC < 0.7 with an Area under the Receiver Operating Characteristics (AUROC) of 0.956, mortality with a concordance index of 0.647, and asthma with a 9-42% improvement versus baseline models. In COPDGene (n=10,110 participants), adding QC-passing, submaximal efforts did not improve the prediction of lung function or mortality; however, Spiro-CLF representations predicted asthma and respiratory phenotypes (joint test P ≤ 2 × 10-3).

Conclusions and relevance: A machine-learning model can predict respiratory phenotypes using suboptimal spirometry; results from all spirometry efforts may contain valuable data. Additional studies are required to determine performance and utility in specific clinical scenarios.

次优肺活量学的深度学习预测呼吸预后和死亡率。
重要性:获得肺活量测定需要重复测试,并使用基于质量控制标准的最大值。次优努力是否对预测呼吸结果有用尚不清楚。目的:确定机器学习模型是否可以预测基于次优肺活量测定的呼吸结局和死亡率。设计:观察性队列(UK Biobank和COPDGene)。背景:多中心;人口多,疾病多。参与者:英国40-69岁;美国年龄45-80岁,吸烟10包年以上,除慢性阻塞性肺病或哮喘外无呼吸系统疾病。曝光:原始螺旋图(音量-时间)。主要结果和测量:为了创建肺功能的组合表示,我们实施了一种对比学习方法,基于spirog的对比学习框架(Spiro-CLF),它利用每个参与者记录的所有体积-时间曲线,并应用不同的转换(例如流量-体积,流量-时间)。我们将“最大”努力定义为以最大FVC通过质量控制(QC)的努力;所有其他努力,包括次极大和qc失败的努力,被定义为“次优”。我们使用来自UK Biobank的最大和次优努力来训练Spiro-CLF模型。我们在英国生物银行的20%测试子集和COPDGene中测试了该模型,1)FEV1/FVC的二元预测结果:我们对来自352,684名UKB参与者的940,705条体积-时间曲线进行了Spiro-CLF训练,每个人进行了2-3次肺活量测定(66.7%,3次肺活量测定),并且至少进行了一次qc通过的肺活量测定。在所有肺活量测定中,61.6%为次优(37.5%为次优,24.1%为qc失败)。在英国生物银行,使用qc失败和次最大努力的Spiro-CLF预测FEV1/FVC < 0.7,受试者工作特征下面积(AUROC)为0.956,死亡率一致性指数为0.647,哮喘与基线模型相比改善了9-42%。在COPDGene (n=10,110名参与者)中,添加qc通过、次最大努力并没有改善肺功能或死亡率的预测;然而,Spiro-CLF表征预测哮喘和呼吸表型(联合检验P≤2 × 10-3)。结论和相关性:机器学习模型可以使用次优肺活量测定法预测呼吸表型;所有肺活量测定的结果可能包含有价值的数据。需要进一步的研究来确定在特定临床情况下的性能和效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信