Brain Age Prediction in Generalized Anxiety Disorder using a Convolutional Neural Network.

Corey Richier, André Zugman, Anita Harrewijn, Elise M Cardinale, Parmis Khosravi, Moji Aghajani, Willem B Bruin, Kevin Hilbert, Narcis Cardoner, Daniel Porta-Casteràs, Marta Cano, Savannah Gosnell, Ramiro Salas, Andrea P Jackowski, Pedro M Pan, Giovanni A Salum, Karina S Blair, James R Blair, Mohammed R Milad, Katie L Burkhouse, K Luan Phan, Heidi K Schroeder, Jeffrey R Strawn, Katja Beesdo-Baum, Neda Jahanshad, Sophia I Thomopoulos, Jared A Nielsen, Jordan W Smoller, Jair C Soares, Benson Mwangi, Mon-Ju Wu, Giovana B Zunta-Soares, Michal Assaf, Gretchen J Diefenbach, Paolo Brambilla, Eleonora Maggioni, David Hofmann, Thomas Straube, Carmen Andreescu, Rebecca B Price, Gisele G Manfro, Federica Agosta, Elisa Canu, Camilla Cividini, Massimo Filippi, Milutin Kostić, Ana Munjiza Jovanovic, Brenda Benson, Gabrielle F Freitag, Ellen Leibenluft, Grace V Ringlein, Kathryn Werwath, Hannah Zwiebel, Hans J Grabe, Sandra Van der Auwera, Katharina Wittfeld, Henry Völzke, Robin Bülow, Nicholas L Balderston, Monique Ernst, Lilianne R Mujica-Parodi, Helena van Nieuwenhuizen, Hugo D Critchley, Elena Makovac, Matteo Mancini, Frances Meeten, Cristina Ottaviani, Gregory A Fonzo, Martin P Paulus, Murray B Stein, Raquel E Gur, Ruben C Gur, Antonia N Kaczkurkin, Bart Larsen, Theodore D Satterthwaite, Jennifer Harper, Michael T Perino, Chad M Sylvester, Qiongru Yu, Patrick McClure, Francisco Pereira, Ulrike Lueken, Dick J Veltman, Paul M Thompson, Nynke A Groenewold, Janna Marie Bas-Hoogendam, Dan J Stein, Nic J A Van der Wee, Anderson M Winkler, Daniel S Pine, Chelsea K Sawyers
{"title":"Brain Age Prediction in Generalized Anxiety Disorder using a Convolutional Neural Network.","authors":"Corey Richier, André Zugman, Anita Harrewijn, Elise M Cardinale, Parmis Khosravi, Moji Aghajani, Willem B Bruin, Kevin Hilbert, Narcis Cardoner, Daniel Porta-Casteràs, Marta Cano, Savannah Gosnell, Ramiro Salas, Andrea P Jackowski, Pedro M Pan, Giovanni A Salum, Karina S Blair, James R Blair, Mohammed R Milad, Katie L Burkhouse, K Luan Phan, Heidi K Schroeder, Jeffrey R Strawn, Katja Beesdo-Baum, Neda Jahanshad, Sophia I Thomopoulos, Jared A Nielsen, Jordan W Smoller, Jair C Soares, Benson Mwangi, Mon-Ju Wu, Giovana B Zunta-Soares, Michal Assaf, Gretchen J Diefenbach, Paolo Brambilla, Eleonora Maggioni, David Hofmann, Thomas Straube, Carmen Andreescu, Rebecca B Price, Gisele G Manfro, Federica Agosta, Elisa Canu, Camilla Cividini, Massimo Filippi, Milutin Kostić, Ana Munjiza Jovanovic, Brenda Benson, Gabrielle F Freitag, Ellen Leibenluft, Grace V Ringlein, Kathryn Werwath, Hannah Zwiebel, Hans J Grabe, Sandra Van der Auwera, Katharina Wittfeld, Henry Völzke, Robin Bülow, Nicholas L Balderston, Monique Ernst, Lilianne R Mujica-Parodi, Helena van Nieuwenhuizen, Hugo D Critchley, Elena Makovac, Matteo Mancini, Frances Meeten, Cristina Ottaviani, Gregory A Fonzo, Martin P Paulus, Murray B Stein, Raquel E Gur, Ruben C Gur, Antonia N Kaczkurkin, Bart Larsen, Theodore D Satterthwaite, Jennifer Harper, Michael T Perino, Chad M Sylvester, Qiongru Yu, Patrick McClure, Francisco Pereira, Ulrike Lueken, Dick J Veltman, Paul M Thompson, Nynke A Groenewold, Janna Marie Bas-Hoogendam, Dan J Stein, Nic J A Van der Wee, Anderson M Winkler, Daniel S Pine, Chelsea K Sawyers","doi":"10.21203/rs.3.rs-6866544/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Higher predicted brain age difference has been associated with several psychiatric disorders. Generalized anxiety disorder (GAD) is associated with markers of accelerated aging. In this study, we determined brain predicted age difference (PAD) in individuals with GAD and healthy controls (HC) as well as group differences in PAD variability using voxel-wise structural MRI. The training dataset included 3,511 controls, and the testing dataset included 1,595 individuals with GAD and 4,552 HC from the ENIGMA-Anxiety GAD Working Group. A convolutional neural network model using four input modalities per subject and a model ensemble approach was used to predict brain age. The PAD was then calculated by subtracting chronological age. Model performance was consistent with other image-based brain age prediction models with similar accuracy across the training set (mean absolute error (MAE) = 2.95 years) and HC in the testing set (MAE = 2.94). We found no evidence of accelerated brain aging in individuals with GAD, though we did find evidence for greater variation in PAD for individuals with GAD (Levene's test: W = 442.98, <i>p</i> < .001) and evidence for greater variability in PAD of those with GAD over 25 years of age. No relationships between PAD and clinical or demographic measures were found. To conclude, using large training and testing samples, the study found no significant association between GAD and PAD, although individuals with GAD had greater heterogeneity in brain-predicted age.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236912/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6866544/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Higher predicted brain age difference has been associated with several psychiatric disorders. Generalized anxiety disorder (GAD) is associated with markers of accelerated aging. In this study, we determined brain predicted age difference (PAD) in individuals with GAD and healthy controls (HC) as well as group differences in PAD variability using voxel-wise structural MRI. The training dataset included 3,511 controls, and the testing dataset included 1,595 individuals with GAD and 4,552 HC from the ENIGMA-Anxiety GAD Working Group. A convolutional neural network model using four input modalities per subject and a model ensemble approach was used to predict brain age. The PAD was then calculated by subtracting chronological age. Model performance was consistent with other image-based brain age prediction models with similar accuracy across the training set (mean absolute error (MAE) = 2.95 years) and HC in the testing set (MAE = 2.94). We found no evidence of accelerated brain aging in individuals with GAD, though we did find evidence for greater variation in PAD for individuals with GAD (Levene's test: W = 442.98, p < .001) and evidence for greater variability in PAD of those with GAD over 25 years of age. No relationships between PAD and clinical or demographic measures were found. To conclude, using large training and testing samples, the study found no significant association between GAD and PAD, although individuals with GAD had greater heterogeneity in brain-predicted age.

用卷积神经网络预测广泛性焦虑障碍的脑年龄。
较高的预测脑年龄差异与几种精神疾病有关。广泛性焦虑障碍(GAD)与加速衰老的标志物有关。在这项研究中,我们使用体素结构MRI确定了GAD患者和健康对照(HC)的脑预测年龄差异(PAD)以及PAD变异性的组间差异。训练数据集包括3511个对照组,测试数据集包括来自ENIGMA-Anxiety GAD工作组的1595名GAD患者和4552名HC患者。使用卷积神经网络模型和模型集成方法预测脑年龄。然后通过减去实际年龄来计算PAD。模型的性能与其他基于图像的脑年龄预测模型一致,在训练集(平均绝对误差(MAE) = 2.95年)和测试集的HC (MAE = 2.94)具有相似的准确性。我们没有发现GAD患者大脑衰老加速的证据,尽管我们确实发现了GAD患者PAD变化较大的证据(Levene检验:W = 442.98, p < 0.001),以及25岁以上GAD患者PAD变化较大的证据。没有发现PAD与临床或人口统计学指标之间的关系。总之,通过大量的训练和测试样本,研究发现广泛性焦虑症和PAD之间没有明显的联系,尽管广泛性焦虑症患者在大脑预测年龄上有更大的异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信