A Natural Depsipeptide Antibiotic that Targets the E site of the Bacterial Ribosome.

Gerard Wright, Manpreet Kaur, Dmitrii Travin, Max Berger, Manoj Jangra, Martino Morici, Haaris Ahsan Safdari, Dorota Klepacki, Wenliang Wang, Michael Cook, Sommer Chou, Allison Guitor, Kalinka Koteva, Min Xu, Linda Ejim, Lesley Macneil, Nora Vázquez-Laslop, Alexander Mankin, Daniel Wilson
{"title":"A Natural Depsipeptide Antibiotic that Targets the E site of the Bacterial Ribosome.","authors":"Gerard Wright, Manpreet Kaur, Dmitrii Travin, Max Berger, Manoj Jangra, Martino Morici, Haaris Ahsan Safdari, Dorota Klepacki, Wenliang Wang, Michael Cook, Sommer Chou, Allison Guitor, Kalinka Koteva, Min Xu, Linda Ejim, Lesley Macneil, Nora Vázquez-Laslop, Alexander Mankin, Daniel Wilson","doi":"10.21203/rs.3.rs-6925047/v1","DOIUrl":null,"url":null,"abstract":"<p><p>A significant challenge in addressing the antibiotic resistance crisis is identifying new antimicrobial compounds. Although natural products produced by fungi and bacteria, particularly actinomycetes, have been the source of most antibiotics discovered over the past 80 years, they have fallen out of favor due to the frequent rediscovery of known drug scaffolds. The current perception is that antibiotic-producing actinomycetes have been over-mined and possess little novelty left to yield. Here, we demonstrate that by using improved fractionation approaches that enrich previously overlooked minor products, even well-studied strains of antibiotic-producing actinomycetes can provide new chemical scaffolds with unique modes of action. By fractionating a library of natural product extracts from soil bacteria, we show that Streptomyces rimosus, the source of the well-known antibiotic oxytetracycline, produces a previously overlooked cyclic depsipeptide antibiotic that we called manikomycin. Manikomycin can kill multi-drug-resistant Enterobacteriaceae and is not susceptible to resistance associated with clinically used antibiotics. Biochemical, genetic, and structural analyses reveal that manikomycin binds in the 'exit' or E site of the large subunit of the bacterial ribosome preventing the entry of the 3' end of the tRNA into the E site and effectively hindering the translocation step of protein synthesis in a sequence context-specific manner. Manikomycin is the first antibacterial agent to target the critical but underexplored E site in the large ribosomal subunit, highlighting its value as a lead for developing new antibiotics.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6925047/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A significant challenge in addressing the antibiotic resistance crisis is identifying new antimicrobial compounds. Although natural products produced by fungi and bacteria, particularly actinomycetes, have been the source of most antibiotics discovered over the past 80 years, they have fallen out of favor due to the frequent rediscovery of known drug scaffolds. The current perception is that antibiotic-producing actinomycetes have been over-mined and possess little novelty left to yield. Here, we demonstrate that by using improved fractionation approaches that enrich previously overlooked minor products, even well-studied strains of antibiotic-producing actinomycetes can provide new chemical scaffolds with unique modes of action. By fractionating a library of natural product extracts from soil bacteria, we show that Streptomyces rimosus, the source of the well-known antibiotic oxytetracycline, produces a previously overlooked cyclic depsipeptide antibiotic that we called manikomycin. Manikomycin can kill multi-drug-resistant Enterobacteriaceae and is not susceptible to resistance associated with clinically used antibiotics. Biochemical, genetic, and structural analyses reveal that manikomycin binds in the 'exit' or E site of the large subunit of the bacterial ribosome preventing the entry of the 3' end of the tRNA into the E site and effectively hindering the translocation step of protein synthesis in a sequence context-specific manner. Manikomycin is the first antibacterial agent to target the critical but underexplored E site in the large ribosomal subunit, highlighting its value as a lead for developing new antibiotics.

一种针对细菌核糖体E位点的天然沉积肽抗生素。
解决抗生素耐药性危机的一项重大挑战是确定新的抗微生物化合物。虽然真菌和细菌产生的天然产物,特别是放线菌,是过去80年来发现的大多数抗生素的来源,但由于已知药物支架的频繁重新发现,它们已经不再受欢迎。目前的看法是,产生抗生素的放线菌已被过度开采,几乎没有新颖性。在这里,我们证明了通过使用改进的分离方法来丰富以前被忽视的次要产物,即使是经过充分研究的产生抗生素的放线菌菌株也可以提供具有独特作用模式的新化学支架。通过从土壤细菌中分离天然产物提取物的文库,我们发现链霉菌,众所周知的抗生素土霉素的来源,产生了一种以前被忽视的环状沉积肽抗生素,我们称之为马可霉素。马可霉素可以杀死多重耐药肠杆菌科,并且不容易产生与临床使用的抗生素相关的耐药性。生化、遗传和结构分析表明,manikomycin结合在细菌核糖体大亚基的“出口”或E位点,阻止tRNA的3'端进入E位点,并以序列上下文特异性的方式有效地阻碍蛋白质合成的易位步骤。Manikomycin是第一种针对核糖体大亚基中关键但尚未开发的E位点的抗菌剂,突出了其作为开发新抗生素的先导物的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信