Benchmarking of T cell receptor-epitope predictors with ePytope-TCR.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-08-13 Epub Date: 2025-07-07 DOI:10.1016/j.xgen.2025.100946
Felix Drost, Anna Chernysheva, Mahmoud Albahah, Katharina Kocher, Kilian Schober, Benjamin Schubert
{"title":"Benchmarking of T cell receptor-epitope predictors with ePytope-TCR.","authors":"Felix Drost, Anna Chernysheva, Mahmoud Albahah, Katharina Kocher, Kilian Schober, Benjamin Schubert","doi":"10.1016/j.xgen.2025.100946","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the recognition of disease-derived epitopes through T cell receptors (TCRs) has the potential to serve as a stepping stone for the development of efficient immunotherapies and vaccines. While a plethora of sequence-based prediction methods for TCR-epitope binding exists, their pre-trained models have not been comparatively evaluated. To alleviate this shortcoming, we integrated 21 TCR-epitope prediction models into the immune-prediction framework ePytope, offering interoperable interfaces with standard TCR repertoire data formats. We showcase the applicability of ePytope-TCR by evaluating the performance of these publicly available prediction models on two challenging datasets. While novel predictors successfully predicted binding to frequently observed epitopes, all methods failed for less frequently observed epitopes. Further, we detected a strong bias in the prediction scores between different epitope classes. We envision this benchmark to guide researchers in their choice of a predictor and to accelerate the method development by defining standardized evaluation settings.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100946"},"PeriodicalIF":11.1000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the recognition of disease-derived epitopes through T cell receptors (TCRs) has the potential to serve as a stepping stone for the development of efficient immunotherapies and vaccines. While a plethora of sequence-based prediction methods for TCR-epitope binding exists, their pre-trained models have not been comparatively evaluated. To alleviate this shortcoming, we integrated 21 TCR-epitope prediction models into the immune-prediction framework ePytope, offering interoperable interfaces with standard TCR repertoire data formats. We showcase the applicability of ePytope-TCR by evaluating the performance of these publicly available prediction models on two challenging datasets. While novel predictors successfully predicted binding to frequently observed epitopes, all methods failed for less frequently observed epitopes. Further, we detected a strong bias in the prediction scores between different epitope classes. We envision this benchmark to guide researchers in their choice of a predictor and to accelerate the method development by defining standardized evaluation settings.

用表位- tcr对T细胞受体表位预测因子进行基准测试。
了解通过T细胞受体(tcr)识别疾病来源的表位有可能成为开发有效免疫疗法和疫苗的垫脚石。虽然存在大量基于序列的tcr -表位结合预测方法,但它们的预训练模型尚未得到比较评估。为了缓解这一缺点,我们将21个TCR表位预测模型集成到免疫预测框架ePytope中,提供与标准TCR表位数据格式的可互操作接口。我们通过评估这些公开可用的预测模型在两个具有挑战性的数据集上的性能来展示ePytope-TCR的适用性。虽然新的预测因子成功地预测了与经常观察到的表位的结合,但所有的方法都无法预测不经常观察到的表位。此外,我们发现不同表位类别之间的预测分数存在强烈偏差。我们设想这个基准可以指导研究人员选择预测器,并通过定义标准化的评估设置来加速方法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信