Time as a danger signal promoting G1 arrest after mitosis.

IF 18.1 1区 生物学 Q1 CELL BIOLOGY
Luke J Fulcher, Caleb Batley, Tomoaki Sobajima, Francis A Barr
{"title":"Time as a danger signal promoting G1 arrest after mitosis.","authors":"Luke J Fulcher, Caleb Batley, Tomoaki Sobajima, Francis A Barr","doi":"10.1016/j.tcb.2025.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Cell cycle checkpoints preventing the replication and inheritance of damaged DNA are crucial for maintaining genome stability and stopping the growth of damaged cells. Canonical checkpoints do this by preventing passage between cell cycle phases until damage has been repaired, or by promoting cell cycle exit. Herein we review checkpoint integration between cell cycle phases, specifically findings showing that extended spindle assembly checkpoint surveillance in mitosis is a danger signal triggering G1 cell cycle arrest. Evidence linking mitotic delays induced by activation of the spindle assembly checkpoint with positive and negative regulators of the G1 DNA damage checkpoint target p53 is discussed, with a focus on time-dependent changes to a p53-binding deubiquitinating complex USP28-53BP1 and the p53 ubiquitin-ligase mouse double minute homologue 2 (MDM2), respectively.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":18.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2025.06.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell cycle checkpoints preventing the replication and inheritance of damaged DNA are crucial for maintaining genome stability and stopping the growth of damaged cells. Canonical checkpoints do this by preventing passage between cell cycle phases until damage has been repaired, or by promoting cell cycle exit. Herein we review checkpoint integration between cell cycle phases, specifically findings showing that extended spindle assembly checkpoint surveillance in mitosis is a danger signal triggering G1 cell cycle arrest. Evidence linking mitotic delays induced by activation of the spindle assembly checkpoint with positive and negative regulators of the G1 DNA damage checkpoint target p53 is discussed, with a focus on time-dependent changes to a p53-binding deubiquitinating complex USP28-53BP1 and the p53 ubiquitin-ligase mouse double minute homologue 2 (MDM2), respectively.

时间是促进有丝分裂后G1停搏的危险信号。
防止受损DNA复制和遗传的细胞周期检查点对于维持基因组稳定性和阻止受损细胞的生长至关重要。规范检查点通过阻止细胞周期阶段之间的通道,直到损伤被修复,或通过促进细胞周期退出来做到这一点。在这里,我们回顾了细胞周期阶段之间的检查点整合,特别是有丝分裂中纺锤体组装检查点的延长监视是触发G1细胞周期停滞的危险信号。本文讨论了纺锤体组装检查点激活诱导的有丝分裂延迟与G1 DNA损伤检查点靶点p53的阳性和阴性调节因子之间的联系,重点研究了p53结合的去泛素化复合物USP28-53BP1和p53泛素连接酶小鼠双分钟同源物2 (MDM2)的时间依赖性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Cell Biology
Trends in Cell Biology 生物-细胞生物学
CiteScore
32.00
自引率
0.50%
发文量
160
审稿时长
61 days
期刊介绍: Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信