Difficult-to-culture micro-organisms specifically isolated using the liquid-liquid co-culture method - towards the identification of bacterial species and metabolites supporting their growth.

IF 2.6 4区 生物学 Q3 MICROBIOLOGY
Atsushi Hisatomi, Takanobu Yoshida, Tomohisa Hasunuma, Moriya Ohkuma, Mitsuo Sakamoto
{"title":"Difficult-to-culture micro-organisms specifically isolated using the liquid-liquid co-culture method - towards the identification of bacterial species and metabolites supporting their growth.","authors":"Atsushi Hisatomi, Takanobu Yoshida, Tomohisa Hasunuma, Moriya Ohkuma, Mitsuo Sakamoto","doi":"10.1099/mic.0.001581","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the liquid-liquid co-culture method was applied using faecal samples and specific bacterial species as growth-supporting bacteria. We aimed to isolate new, difficult-to-culture bacterial species using metabolites produced by supportive bacteria to promote the growth of small bacteria selected using filter treatment. This study aimed to identify the supporting bacteria and their metabolites that promote the growth of these isolates. Analysis of the 16S rRNA gene sequences of the isolates obtained by co-culture revealed that they were <i>Waltera</i> spp., <i>Roseburia</i> spp. and <i>Phascolarctobacterium faecium</i>. <i>Roseburia</i> spp. and <i>Waltera</i> spp. were isolated from several faecal samples, suggesting that they were specifically isolated using this culture method. We focused on <i>Waltera</i> spp. isolated from several faecal samples with unique shapes, from long to short or thin cells. The growth of <i>Waltera</i> spp. was not promoted by co-culture on the agar medium, suggesting that growth was only promoted by liquid-liquid co-culture. The growth of the selected small-sized <i>Waltera</i> spp. was promoted by co-culture, whereas the growth of the unfiltered long-cell <i>Waltera</i> sp. strain was suppressed by co-culture. The selected small <i>Waltera</i> spp. did not grow when the supporting bacterial supernatant was added, suggesting that the supporting bacteria and <i>Waltera</i> spp. had a symbiotic relationship through the continuous exchange of metabolites. Co-cultured supporting bacteria (diluted faecal samples) with selected small-sized <i>Waltera</i> spp. were predominantly <i>Bacteroides thetaiotaomicron</i> and <i>Escherichia coli</i>, compared with monoculture diluted faecal samples. We further confirmed the growth of filtered <i>Waltera</i> spp. by co-culturing them with <i>B. thetaiotaomicron</i> and <i>E. coli</i>. Additionally, when <i>B. thetaiotaomicron</i> and <i>E. coli</i> were co-cultured with the selected small <i>Waltera</i> spp., some nutrients and metabolites were reduced. Decreased metabolites were added to the medium, and selected small-sized <i>Waltera</i> spp. were cultured, but <i>Waltera</i> spp. did not grow. Therefore, it was again strongly suggested that continuous co-culturing with the supporting bacteria was important for the growth of <i>Waltera</i> spp. The liquid-liquid co-culture method used in this study can be used to isolate new and unique bacterial species from any environment, not just the gut microbiome. Furthermore, this co-culture method helped identify supporting bacteria and understand metabolite variations.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001581","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the liquid-liquid co-culture method was applied using faecal samples and specific bacterial species as growth-supporting bacteria. We aimed to isolate new, difficult-to-culture bacterial species using metabolites produced by supportive bacteria to promote the growth of small bacteria selected using filter treatment. This study aimed to identify the supporting bacteria and their metabolites that promote the growth of these isolates. Analysis of the 16S rRNA gene sequences of the isolates obtained by co-culture revealed that they were Waltera spp., Roseburia spp. and Phascolarctobacterium faecium. Roseburia spp. and Waltera spp. were isolated from several faecal samples, suggesting that they were specifically isolated using this culture method. We focused on Waltera spp. isolated from several faecal samples with unique shapes, from long to short or thin cells. The growth of Waltera spp. was not promoted by co-culture on the agar medium, suggesting that growth was only promoted by liquid-liquid co-culture. The growth of the selected small-sized Waltera spp. was promoted by co-culture, whereas the growth of the unfiltered long-cell Waltera sp. strain was suppressed by co-culture. The selected small Waltera spp. did not grow when the supporting bacterial supernatant was added, suggesting that the supporting bacteria and Waltera spp. had a symbiotic relationship through the continuous exchange of metabolites. Co-cultured supporting bacteria (diluted faecal samples) with selected small-sized Waltera spp. were predominantly Bacteroides thetaiotaomicron and Escherichia coli, compared with monoculture diluted faecal samples. We further confirmed the growth of filtered Waltera spp. by co-culturing them with B. thetaiotaomicron and E. coli. Additionally, when B. thetaiotaomicron and E. coli were co-cultured with the selected small Waltera spp., some nutrients and metabolites were reduced. Decreased metabolites were added to the medium, and selected small-sized Waltera spp. were cultured, but Waltera spp. did not grow. Therefore, it was again strongly suggested that continuous co-culturing with the supporting bacteria was important for the growth of Waltera spp. The liquid-liquid co-culture method used in this study can be used to isolate new and unique bacterial species from any environment, not just the gut microbiome. Furthermore, this co-culture method helped identify supporting bacteria and understand metabolite variations.

用液-液共培养法分离出难以培养的微生物——用于鉴定支持其生长的细菌种类和代谢物。
本研究采用液液共培养法,以粪便样品和特定菌种作为生长支持菌。我们的目的是利用支持菌产生的代谢物来分离新的难以培养的细菌物种,以促进使用过滤器处理的小细菌的生长。本研究旨在鉴定促进这些分离菌生长的支持菌及其代谢物。对共培养分离物的16S rRNA基因序列分析表明它们分别为Waltera spp、Roseburia spp和Phascolarctobacterium faecium。从多个粪便样本中分离出Roseburia spp和Waltera spp,表明该培养方法具有特异性。我们重点研究了从几个粪便样本中分离到的具有独特形状的Waltera sp .,从长到短或薄的细胞。在琼脂培养基上共培养不能促进Waltera的生长,说明液液共培养只能促进Waltera的生长。共培养对筛选的小细胞Waltera sp.的生长有促进作用,而对未过滤的长细胞Waltera sp.的生长有抑制作用。添加支撑菌上清液后,所选的小瓦尔特拉氏菌没有生长,说明支撑菌与瓦尔特拉氏菌通过不断交换代谢物形成了共生关系。与单独培养稀释后的粪便样品相比,与选定的小型沃尔特目细菌共培养的支持细菌(稀释后的粪便样品)以拟杆菌和大肠杆菌为主。通过与b.s thetaiotaomicron和e.c oli共培养,进一步证实了过滤后的Waltera菌的生长。此外,当选取的Waltera小种与B. thetaiotaomicron和E. coli共培养时,一些营养物质和代谢物减少。在培养基中加入减少的代谢物,并选择小型Waltera进行培养,但Waltera没有生长。因此,再次强烈建议与支持菌的持续共培养对于Waltera spp的生长是重要的。本研究中使用的液液共培养方法可用于从任何环境中分离新的和独特的细菌物种,而不仅仅是肠道微生物群。此外,这种共培养方法有助于识别支持细菌和了解代谢物的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信