Self-supervised learning for generalizable particle picking in cryo-EM micrographs.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Andreas Zamanos, Panagiotis Koromilas, Giorgos Bouritsas, Panagiotis L Kastritis, Yannis Panagakis
{"title":"Self-supervised learning for generalizable particle picking in cryo-EM micrographs.","authors":"Andreas Zamanos, Panagiotis Koromilas, Giorgos Bouritsas, Panagiotis L Kastritis, Yannis Panagakis","doi":"10.1016/j.crmeth.2025.101089","DOIUrl":null,"url":null,"abstract":"<p><p>We present cryoelectron microscopy masked autoencoder (cryo-EMMAE), a self-supervised method designed to overcome the need for manually annotated cryo-EM data. cryo-EMMAE leverages the representation space of a masked autoencoder to pick particle pixels through clustering of the MAE latent representation. Evaluation across different EMPIAR datasets demonstrates that cryo-EMMAE outperforms state-of-the-art supervised methods in terms of generalization capabilities. Importantly, our method showcases consistent performance, independent of the dataset used for training. Additionally, cryo-EMMAE is data efficient, as we experimentally observe that it converges with as few as five micrographs. Further, 3D reconstruction results indicate that our method has superior performance in reconstructing the volumes in both single-particle datasets and multi-particle micrographs derived from cell extracts. Our results underscore the potential of self-supervised learning in advancing cryo-EM image analysis, offering an alternative for more efficient and cost-effective structural biology research. Code is available at https://github.com/azamanos/Cryo-EMMAE.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101089"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present cryoelectron microscopy masked autoencoder (cryo-EMMAE), a self-supervised method designed to overcome the need for manually annotated cryo-EM data. cryo-EMMAE leverages the representation space of a masked autoencoder to pick particle pixels through clustering of the MAE latent representation. Evaluation across different EMPIAR datasets demonstrates that cryo-EMMAE outperforms state-of-the-art supervised methods in terms of generalization capabilities. Importantly, our method showcases consistent performance, independent of the dataset used for training. Additionally, cryo-EMMAE is data efficient, as we experimentally observe that it converges with as few as five micrographs. Further, 3D reconstruction results indicate that our method has superior performance in reconstructing the volumes in both single-particle datasets and multi-particle micrographs derived from cell extracts. Our results underscore the potential of self-supervised learning in advancing cryo-EM image analysis, offering an alternative for more efficient and cost-effective structural biology research. Code is available at https://github.com/azamanos/Cryo-EMMAE.

低温电镜显微图中可泛化粒子拾取的自监督学习。
我们提出了冷冻电子显微镜掩膜自动编码器(cryo-EMMAE),这是一种自我监督的方法,旨在克服手动注释冷冻电子显微镜数据的需要。cryo-EMMAE利用掩码自编码器的表示空间,通过对MAE潜在表示的聚类来挑选粒子像素。对不同EMPIAR数据集的评估表明,cryo-EMMAE在泛化能力方面优于最先进的监督方法。重要的是,我们的方法展示了一致的性能,独立于用于训练的数据集。此外,cryo-EMMAE具有数据效率,因为我们在实验中观察到它只收敛了5张显微照片。此外,三维重建结果表明,我们的方法在单粒子数据集和来自细胞提取物的多粒子显微图中都具有优越的体积重建性能。我们的研究结果强调了自我监督学习在推进冷冻电镜图像分析方面的潜力,为更有效和更具成本效益的结构生物学研究提供了另一种选择。代码可从https://github.com/azamanos/Cryo-EMMAE获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信