Hye Ju Yeo, Dasom Noh, Eunjeong Son, Sunyoung Kwon, Woo Hyun Cho
{"title":"Machine Learning for 1-Year Mortality Prediction in Lung Transplant Recipients: ISHLT Registry.","authors":"Hye Ju Yeo, Dasom Noh, Eunjeong Son, Sunyoung Kwon, Woo Hyun Cho","doi":"10.3389/ti.2025.14121","DOIUrl":null,"url":null,"abstract":"<p><p>Optimizing lung transplant candidate selection is crucial for maximizing resource efficiency and improving patient outcomes. Using data from the International Society for Heart and Lung Transplantation (ISHLT) registry (29,364 patients), we developed a deep learning model to predict 1-year survival after lung transplantation. Initially, 25 pretransplant factors were identified, and their importance was assessed using SHapley Additive exPlanations values. We refined the model by selecting the top 10 most influential factors and compared its performance with the original model. Additionally, we conducted external validation using an independent in-house dataset. Among the 29,364 patients, 4,729 (16.1%) died within 1 year, while 24,635 survived. The Gradient Boosting Machine (GBM) model achieved the highest performance (AUC: 0.958, accuracy: 0.949). Notably, the streamlined model using only the top 10 factors maintained identical performance (AUC: 0.958, accuracy: 0.949). The in-house dataset used for external validation showed significant compositional differences compared to the ISHLT dataset. Despite these differences, the GBM model performed well (AUC: 0.852, accuracy: 0.764). Notably, the Multilayer Perceptron model demonstrated superior generalization with an AUC of 0.911 and accuracy of 0.870. Our machine learning-based approach effectively predicts 1-year mortality in lung transplant recipients using a minimal set of pretransplant factors.</p>","PeriodicalId":23343,"journal":{"name":"Transplant International","volume":"38 ","pages":"14121"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplant International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ti.2025.14121","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing lung transplant candidate selection is crucial for maximizing resource efficiency and improving patient outcomes. Using data from the International Society for Heart and Lung Transplantation (ISHLT) registry (29,364 patients), we developed a deep learning model to predict 1-year survival after lung transplantation. Initially, 25 pretransplant factors were identified, and their importance was assessed using SHapley Additive exPlanations values. We refined the model by selecting the top 10 most influential factors and compared its performance with the original model. Additionally, we conducted external validation using an independent in-house dataset. Among the 29,364 patients, 4,729 (16.1%) died within 1 year, while 24,635 survived. The Gradient Boosting Machine (GBM) model achieved the highest performance (AUC: 0.958, accuracy: 0.949). Notably, the streamlined model using only the top 10 factors maintained identical performance (AUC: 0.958, accuracy: 0.949). The in-house dataset used for external validation showed significant compositional differences compared to the ISHLT dataset. Despite these differences, the GBM model performed well (AUC: 0.852, accuracy: 0.764). Notably, the Multilayer Perceptron model demonstrated superior generalization with an AUC of 0.911 and accuracy of 0.870. Our machine learning-based approach effectively predicts 1-year mortality in lung transplant recipients using a minimal set of pretransplant factors.
期刊介绍:
The aim of the journal is to serve as a forum for the exchange of scientific information in the form of original and high quality papers in the field of transplantation. Clinical and experimental studies, as well as editorials, letters to the editors, and, occasionally, reviews on the biology, physiology, and immunology of transplantation of tissues and organs, are published. Publishing time for the latter is approximately six months, provided major revisions are not needed. The journal is published in yearly volumes, each volume containing twelve issues. Papers submitted to the journal are subject to peer review.