{"title":"Mechanism of pH-sensitive Amphiphilic Endosomal Escape of Ionizable Lipid Nanoparticles for Cytosolic Nucleic Acid Delivery.","authors":"Zheng-Rong Lu, Da Sun","doi":"10.1007/s11095-025-03890-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are among the most successful classes of nonviral delivery systems for nucleic acid-based therapeutics in treating human diseases. One of the key challenges in achieving efficient cytosolic delivery of nucleic acids is overcoming endosomal entrapment within cells. Conventional lipid bilayer-forming cationic and amino lipids mediate endosomal escape via the mechanism of lamellar-to-inverted hexagonal phase transition, resulting in suboptimal cytosolic cargo delivery. pH-sensitive amphiphilic cell membrane disruption and endosomal escape have emerged as a strategy for designing protonatable or ionizable lipids, especially nonlamellar lipids, for efficient cytosolic nucleic acid delivery. Nonlamellar amino lipids possess a large wedge-shaped tail structure and do not form stable lipid bilayers. These lipids and their corresponding LNPs remain neutral, non-amphiphilic, or minimally amphiphilic at physiological pH (7.4). They become amphiphilic upon protonation or ionization in acidic endosomes (pH 6.5-5.4). The electrostatic interaction of ionized nonlamellar lipids with the negatively charged endosome membrane, combined with their large wedge-like structures, disrupts the lipid bilayer, facilitating efficient endosomal escape. Additionally, the nonlamellar ionizable lipids can be fine-tuned by altering the structure of amino head groups and lipid tails to achieve the precisely controlled pH-sensitive amphiphilic membrane disruption at endosomal pH. Therefore, these lipids exhibit excellent safety profiles and high efficiency for in vivo delivery of various therapeutic nucleic acids. pH-sensitive amphiphilic membrane disruption and endosomal escape provide a feasible and effective mechanism for designing ionizable lipids for safe and efficient in vivo nucleic acid delivery.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03890-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) are among the most successful classes of nonviral delivery systems for nucleic acid-based therapeutics in treating human diseases. One of the key challenges in achieving efficient cytosolic delivery of nucleic acids is overcoming endosomal entrapment within cells. Conventional lipid bilayer-forming cationic and amino lipids mediate endosomal escape via the mechanism of lamellar-to-inverted hexagonal phase transition, resulting in suboptimal cytosolic cargo delivery. pH-sensitive amphiphilic cell membrane disruption and endosomal escape have emerged as a strategy for designing protonatable or ionizable lipids, especially nonlamellar lipids, for efficient cytosolic nucleic acid delivery. Nonlamellar amino lipids possess a large wedge-shaped tail structure and do not form stable lipid bilayers. These lipids and their corresponding LNPs remain neutral, non-amphiphilic, or minimally amphiphilic at physiological pH (7.4). They become amphiphilic upon protonation or ionization in acidic endosomes (pH 6.5-5.4). The electrostatic interaction of ionized nonlamellar lipids with the negatively charged endosome membrane, combined with their large wedge-like structures, disrupts the lipid bilayer, facilitating efficient endosomal escape. Additionally, the nonlamellar ionizable lipids can be fine-tuned by altering the structure of amino head groups and lipid tails to achieve the precisely controlled pH-sensitive amphiphilic membrane disruption at endosomal pH. Therefore, these lipids exhibit excellent safety profiles and high efficiency for in vivo delivery of various therapeutic nucleic acids. pH-sensitive amphiphilic membrane disruption and endosomal escape provide a feasible and effective mechanism for designing ionizable lipids for safe and efficient in vivo nucleic acid delivery.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.