{"title":"Liquid-Liquid Phase Separation in Hereditary Hearing Loss.","authors":"Kefan Tao, Yanjun Zong, Xiaozhou Liu, Xinyu Shi, Zhengdong Zhao, Yu Sun","doi":"10.1007/s12264-025-01446-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing loss is one of the most prevalent sensory disorders affecting the human nervous system. Liquid-liquid phase separation (LLPS) is a physiological process that facilitates the reversible and dynamic assembly of biomolecular condensates. Increasing evidence suggests that LLPS plays a significant role in the pathogenesis of hereditary hearing loss. Nevertheless, there is a conspicuous lack of systematic investigations exploring the impact of LLPS abnormalities on the etiology of hereditary hearing loss. In this review, we examine the mechanisms by which dysfunctions in LLPS contribute to hereditary hearing loss, specifically focusing on its effects on mechanoelectrical transduction in hair bundles, transcriptional regulation, post-transcriptional modifications, the actin cytoskeleton, ion homeostasis within the inner ear, and energy and redox homeostasis. Furthermore, we evaluate the considerable potential of targeting LLPS as a therapeutic approach for hearing loss and propose innovative perspectives on LLPS that may guide future research initiatives in the field of auditory disorders.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01446-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hearing loss is one of the most prevalent sensory disorders affecting the human nervous system. Liquid-liquid phase separation (LLPS) is a physiological process that facilitates the reversible and dynamic assembly of biomolecular condensates. Increasing evidence suggests that LLPS plays a significant role in the pathogenesis of hereditary hearing loss. Nevertheless, there is a conspicuous lack of systematic investigations exploring the impact of LLPS abnormalities on the etiology of hereditary hearing loss. In this review, we examine the mechanisms by which dysfunctions in LLPS contribute to hereditary hearing loss, specifically focusing on its effects on mechanoelectrical transduction in hair bundles, transcriptional regulation, post-transcriptional modifications, the actin cytoskeleton, ion homeostasis within the inner ear, and energy and redox homeostasis. Furthermore, we evaluate the considerable potential of targeting LLPS as a therapeutic approach for hearing loss and propose innovative perspectives on LLPS that may guide future research initiatives in the field of auditory disorders.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.