Qutrit toric code and parafermions in trapped ions.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mohsin Iqbal, Anasuya Lyons, Chiu Fan Bowen Lo, Nathanan Tantivasadakarn, Joan Dreiling, Cameron Foltz, Thomas M Gatterman, Dan Gresh, Nathan Hewitt, Craig A Holliman, Jacob Johansen, Brian Neyenhuis, Yohei Matsuoka, Michael Mills, Steven A Moses, Peter Siegfried, Ashvin Vishwanath, Ruben Verresen, Henrik Dreyer
{"title":"Qutrit toric code and parafermions in trapped ions.","authors":"Mohsin Iqbal, Anasuya Lyons, Chiu Fan Bowen Lo, Nathanan Tantivasadakarn, Joan Dreiling, Cameron Foltz, Thomas M Gatterman, Dan Gresh, Nathan Hewitt, Craig A Holliman, Jacob Johansen, Brian Neyenhuis, Yohei Matsuoka, Michael Mills, Steven A Moses, Peter Siegfried, Ashvin Vishwanath, Ruben Verresen, Henrik Dreyer","doi":"10.1038/s41467-025-61391-z","DOIUrl":null,"url":null,"abstract":"<p><p>The development of programmable quantum devices can be measured by the complexity of many-body states that they are able to prepare. Among the most significant are topologically ordered states of matter, which enable robust quantum information storage and processing. While topological orders are more readily accessible with qudits, experimental realizations have thus far been limited to lattice models of qubits. Here, we prepare and measure a ground state of the <math> <msub><mrow><mi>Z</mi></mrow> <mrow><mn>3</mn></mrow> </msub> </math> toric code state on 24 qutrits (obtained by encoding one qutrit into two qubits) in a trapped ion quantum processor with fidelity per qutrit exceeding 96.5(3)%. We manipulate two types of defects which go beyond the conventional qubit toric code: a parafermion, and its bound state which is related to charge conjugation symmetry. We further demonstrate defect fusion and the transfer of entanglement between anyons and defects, which we use to control topological qutrits. Our work opens up the space of long-range entangled states with qudit degrees of freedom for use in quantum simulation and universal error-correcting codes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6301"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61391-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of programmable quantum devices can be measured by the complexity of many-body states that they are able to prepare. Among the most significant are topologically ordered states of matter, which enable robust quantum information storage and processing. While topological orders are more readily accessible with qudits, experimental realizations have thus far been limited to lattice models of qubits. Here, we prepare and measure a ground state of the Z 3 toric code state on 24 qutrits (obtained by encoding one qutrit into two qubits) in a trapped ion quantum processor with fidelity per qutrit exceeding 96.5(3)%. We manipulate two types of defects which go beyond the conventional qubit toric code: a parafermion, and its bound state which is related to charge conjugation symmetry. We further demonstrate defect fusion and the transfer of entanglement between anyons and defects, which we use to control topological qutrits. Our work opens up the space of long-range entangled states with qudit degrees of freedom for use in quantum simulation and universal error-correcting codes.

Abstract Image

被困离子中的基度码和参扰。
可编程量子器件的发展可以通过它们能够制备的多体态的复杂性来衡量。其中最重要的是物质的拓扑有序状态,这使得强大的量子信息存储和处理成为可能。虽然拓扑顺序更容易用量子位获得,但迄今为止的实验实现仅限于量子位的晶格模型。在这里,我们在捕获离子量子处理器中制备并测量了24个量子位(通过将一个量子位编码为两个量子位获得)的z3环码态的基态,每个量子位的保真度超过96.5(3)%。我们处理了两种超越传统量子比特环码的缺陷:对偶子及其与电荷共轭对称相关的束缚态。我们进一步展示了缺陷融合和任意子和缺陷之间纠缠的转移,我们使用它来控制拓扑属性。我们的工作开辟了具有量子自由度的远程纠缠态空间,可用于量子模拟和通用纠错码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信