AI Revolution in Radiology, Radiation Oncology and Nuclear Medicine: Transforming and Innovating the Radiological Sciences.

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
S Carriero, R Canella, F Cicchetti, A Angileri, A Bruno, P Biondetti, R R Colciago, A D'Antonio, G Della Pepa, F Grassi, V Granata, C Lanza, S Santicchia, A Miceli, A Piras, V Salvestrini, G Santo, F Pesapane, A Barile, G Carrafiello, A Giovagnoni
{"title":"AI Revolution in Radiology, Radiation Oncology and Nuclear Medicine: Transforming and Innovating the Radiological Sciences.","authors":"S Carriero, R Canella, F Cicchetti, A Angileri, A Bruno, P Biondetti, R R Colciago, A D'Antonio, G Della Pepa, F Grassi, V Granata, C Lanza, S Santicchia, A Miceli, A Piras, V Salvestrini, G Santo, F Pesapane, A Barile, G Carrafiello, A Giovagnoni","doi":"10.1111/1754-9485.13880","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into clinical practice, particularly within radiology, nuclear medicine and radiation oncology, is transforming diagnostic and therapeutic processes. AI-driven tools, especially in deep learning and machine learning, have shown remarkable potential in enhancing image recognition, analysis and decision-making. This technological advancement allows for the automation of routine tasks, improved diagnostic accuracy, and the reduction of human error, leading to more efficient workflows. Moreover, the successful implementation of AI in healthcare requires comprehensive education and training for young clinicians, with a pressing need to incorporate AI into residency programmes, ensuring that future specialists are equipped with traditional skills and a deep understanding of AI technologies and their clinical applications. This includes knowledge of software, data analysis, imaging informatics and ethical considerations surrounding AI use in medicine. By fostering interdisciplinary integration and emphasising AI education, healthcare professionals can fully harness AI's potential to improve patient outcomes and advance the field of medical imaging and therapy. This review aims to evaluate how AI influences radiology, nuclear medicine and radiation oncology, while highlighting the necessity for specialised AI training in medical education to ensure its successful clinical integration.</p>","PeriodicalId":16218,"journal":{"name":"Journal of Medical Imaging and Radiation Oncology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1754-9485.13880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of artificial intelligence (AI) into clinical practice, particularly within radiology, nuclear medicine and radiation oncology, is transforming diagnostic and therapeutic processes. AI-driven tools, especially in deep learning and machine learning, have shown remarkable potential in enhancing image recognition, analysis and decision-making. This technological advancement allows for the automation of routine tasks, improved diagnostic accuracy, and the reduction of human error, leading to more efficient workflows. Moreover, the successful implementation of AI in healthcare requires comprehensive education and training for young clinicians, with a pressing need to incorporate AI into residency programmes, ensuring that future specialists are equipped with traditional skills and a deep understanding of AI technologies and their clinical applications. This includes knowledge of software, data analysis, imaging informatics and ethical considerations surrounding AI use in medicine. By fostering interdisciplinary integration and emphasising AI education, healthcare professionals can fully harness AI's potential to improve patient outcomes and advance the field of medical imaging and therapy. This review aims to evaluate how AI influences radiology, nuclear medicine and radiation oncology, while highlighting the necessity for specialised AI training in medical education to ensure its successful clinical integration.

放射学、放射肿瘤学和核医学中的人工智能革命:改变和创新放射科学。
人工智能(AI)与临床实践的整合,特别是在放射学、核医学和放射肿瘤学领域,正在改变诊断和治疗过程。人工智能驱动的工具,特别是在深度学习和机器学习方面,在增强图像识别、分析和决策方面显示出巨大的潜力。这一技术进步允许日常任务的自动化,提高诊断准确性,减少人为错误,从而实现更高效的工作流程。此外,人工智能在医疗保健领域的成功实施需要对年轻临床医生进行全面的教育和培训,迫切需要将人工智能纳入住院医师计划,确保未来的专家具备传统技能,并对人工智能技术及其临床应用有深刻的理解。这包括软件知识、数据分析、成像信息学以及在医学中使用人工智能的伦理考虑。通过促进跨学科整合和强调人工智能教育,医疗保健专业人员可以充分利用人工智能的潜力,改善患者的治疗效果,推动医学成像和治疗领域的发展。本综述旨在评估人工智能如何影响放射学、核医学和放射肿瘤学,同时强调在医学教育中进行专门的人工智能培训的必要性,以确保其成功的临床整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Journal of Medical Imaging and Radiation Oncology (formerly Australasian Radiology) is the official journal of The Royal Australian and New Zealand College of Radiologists, publishing articles of scientific excellence in radiology and radiation oncology. Manuscripts are judged on the basis of their contribution of original data and ideas or interpretation. All articles are peer reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信