Yi Wen, Hongxia Li, Sydney Smith, Yanzhu Lin, Yan Q Chen, Melissa Bellinger, Eugene Y Zhen, Thomas P Beyer, Robert W Siegel, Yuewei Qian, Giacomo Ruotolo, Robert J Konrad
{"title":"Cholesteryl ester transfer protein activity correlates inversely with apolipoprotein A5 levels.","authors":"Yi Wen, Hongxia Li, Sydney Smith, Yanzhu Lin, Yan Q Chen, Melissa Bellinger, Eugene Y Zhen, Thomas P Beyer, Robert W Siegel, Yuewei Qian, Giacomo Ruotolo, Robert J Konrad","doi":"10.1016/j.jacl.2025.06.008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cholesteryl ester transfer protein (CETP) mediates the exchange of triglycerides (TG) from apolipoprotein B (ApoB)-containing lipoproteins to high-density lipoproteins (HDL) and the reciprocal exchange of cholesterol (C) from HDL to ApoB-containing lipoproteins. CETP inhibition increases HDL-C and decreases low-density lipoprotein cholesterol (LDL-C) while modestly decreasing TG. Considering that CETP inhibitors block removal of TG from TG-rich lipoproteins (TRL), it is interesting that CETP inhibition decreases TG concentrations. TG levels are largely regulated by lipoprotein lipase (LPL), the enzyme primarily responsible for hydrolyzing TG. The angiopoietin-like 3/8 complex (ANGPTL3/8) is the most potent circulating LPL inhibitor, while the TG-lowering apolipoprotein A5 (ApoA5) acts by suppressing ANGPTL3/8-mediated LPL inhibition.</p><p><strong>Methods: </strong>To better understand CETP biology, we studied the effects of CETP overexpression and CETP inhibition on the levels of ANGPTL3/8 and ApoA5 in circulation using dedicated immunoassays.</p><p><strong>Results: </strong>CETP-overexpressing transgenic mice had increased TG and normal ANGPTL3/8 levels but manifested dramatically reduced ApoA5 concentrations. Administration of the CETP inhibitor evacetrapib had no effect on ANGPTL3/8 levels in CETP-overexpressing mice or in humans. However, evacetrapib administration increased ApoA5 concentrations in both species. In human subjects, evacetrapib treatment increased circulating ApoA5 levels in the late-stage ACCELERATE and ACCENTUATE studies by 160.1% and 204.7%, respectively.</p><p><strong>Conclusions: </strong>Our results uncover a previously unrecognized link between CETP and ApoA5 by showing that CETP overexpression reduces ApoA5 levels while CETP inhibition increases ApoA5 concentrations.</p>","PeriodicalId":15392,"journal":{"name":"Journal of clinical lipidology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical lipidology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jacl.2025.06.008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cholesteryl ester transfer protein (CETP) mediates the exchange of triglycerides (TG) from apolipoprotein B (ApoB)-containing lipoproteins to high-density lipoproteins (HDL) and the reciprocal exchange of cholesterol (C) from HDL to ApoB-containing lipoproteins. CETP inhibition increases HDL-C and decreases low-density lipoprotein cholesterol (LDL-C) while modestly decreasing TG. Considering that CETP inhibitors block removal of TG from TG-rich lipoproteins (TRL), it is interesting that CETP inhibition decreases TG concentrations. TG levels are largely regulated by lipoprotein lipase (LPL), the enzyme primarily responsible for hydrolyzing TG. The angiopoietin-like 3/8 complex (ANGPTL3/8) is the most potent circulating LPL inhibitor, while the TG-lowering apolipoprotein A5 (ApoA5) acts by suppressing ANGPTL3/8-mediated LPL inhibition.
Methods: To better understand CETP biology, we studied the effects of CETP overexpression and CETP inhibition on the levels of ANGPTL3/8 and ApoA5 in circulation using dedicated immunoassays.
Results: CETP-overexpressing transgenic mice had increased TG and normal ANGPTL3/8 levels but manifested dramatically reduced ApoA5 concentrations. Administration of the CETP inhibitor evacetrapib had no effect on ANGPTL3/8 levels in CETP-overexpressing mice or in humans. However, evacetrapib administration increased ApoA5 concentrations in both species. In human subjects, evacetrapib treatment increased circulating ApoA5 levels in the late-stage ACCELERATE and ACCENTUATE studies by 160.1% and 204.7%, respectively.
Conclusions: Our results uncover a previously unrecognized link between CETP and ApoA5 by showing that CETP overexpression reduces ApoA5 levels while CETP inhibition increases ApoA5 concentrations.
期刊介绍:
Because the scope of clinical lipidology is broad, the topics addressed by the Journal are equally diverse. Typical articles explore lipidology as it is practiced in the treatment setting, recent developments in pharmacological research, reports of treatment and trials, case studies, the impact of lifestyle modification, and similar academic material of interest to the practitioner.
Sections of Journal of clinical lipidology will address pioneering studies and the clinicians who conduct them, case studies, ethical standards and conduct, professional guidance such as ATP and NCEP, editorial commentary, letters from readers, National Lipid Association (NLA) news and upcoming event information, as well as abstracts from the NLA annual scientific sessions and the scientific forums held by its chapters, when appropriate.