Ellen M Paatela, Faith G St Amant, Danielle C Hamm, Sean R Bennett, Taranjit S Gujral, Silvère M van der Maarel, Stephen J Tapscott
{"title":"A discrete region of the D4Z4 is sufficient to initiate epigenetic silencing.","authors":"Ellen M Paatela, Faith G St Amant, Danielle C Hamm, Sean R Bennett, Taranjit S Gujral, Silvère M van der Maarel, Stephen J Tapscott","doi":"10.1093/hmg/ddaf114","DOIUrl":null,"url":null,"abstract":"<p><p>The DUX4 transcription factor is briefly expressed in the early embryo and is epigenetically repressed in somatic tissues. Loss of epigenetic repression can result in the aberrant expression of DUX4 in skeletal muscle and can cause facioscapulohumeral dystrophy (FSHD). Multiple factors have been identified as necessary to maintain epigenetic silencing of DUX4 in skeletal muscle, but whether specific sequences at the DUX4 locus are sufficient for initiating epigenetic silencing has not been known. We cloned fragments of the D4Z4 macrosatellite repeat, the DNA region that encompasses the DUX4 retrogene, adjacent to a reporter driven by a constitutive promoter and identified a single fragment sufficient to epigenetically repress reporter gene expression. Previously identified repressors of DUX4 expression-SETDB1, ATF7IP, SIN3A/B, and LRIF1-were necessary for silencing activity and p38 inhibitors enhanced suppression. These findings identify a key regulatory sequence for D4Z4 epigenetic repression and establish a model system for mechanistic and discovery studies.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1526-1540"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The DUX4 transcription factor is briefly expressed in the early embryo and is epigenetically repressed in somatic tissues. Loss of epigenetic repression can result in the aberrant expression of DUX4 in skeletal muscle and can cause facioscapulohumeral dystrophy (FSHD). Multiple factors have been identified as necessary to maintain epigenetic silencing of DUX4 in skeletal muscle, but whether specific sequences at the DUX4 locus are sufficient for initiating epigenetic silencing has not been known. We cloned fragments of the D4Z4 macrosatellite repeat, the DNA region that encompasses the DUX4 retrogene, adjacent to a reporter driven by a constitutive promoter and identified a single fragment sufficient to epigenetically repress reporter gene expression. Previously identified repressors of DUX4 expression-SETDB1, ATF7IP, SIN3A/B, and LRIF1-were necessary for silencing activity and p38 inhibitors enhanced suppression. These findings identify a key regulatory sequence for D4Z4 epigenetic repression and establish a model system for mechanistic and discovery studies.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.