Linking endo-lysosomal pH, sterol, and trafficking to neurodegenerative disease.

IF 2.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hari Prasad, Rajini Rao
{"title":"Linking endo-lysosomal pH, sterol, and trafficking to neurodegenerative disease.","authors":"Hari Prasad, Rajini Rao","doi":"10.1093/femsyr/foaf034","DOIUrl":null,"url":null,"abstract":"<p><p>Although endo-lysosomal abnormalities have been recognized as a pathognomonic feature of Alzheimer's disease, the lack of druggable targets has hampered the translation from bench to bedside. This article provides an overview of the insights gained from yeast research with a focus on understudied luminal acidification mechanisms and their major impact on disease progression. The yeast-to-human discovery and validation strategy identified a \"druggable\" triad featuring luminal pH, sterol content, and trafficking that (dys)regulate reciprocally. Endosomal Na+/H+ exchangers (eNHE), discovered in yeast and later described in mammals, provide independent support for this pathogenic model. The brain is often the most severely affected organ in patients with eNHE mutations, and a subset is causally linked to progressive and severe neurodegeneration, demonstrating that neurons heavily rely on fine-tuning of endosomal pH. We present recent advances on the role of eNHE in ageing related neurodegenerative diseases, which has implications for pathogenesis and therapy. Future studies should unravel the broader landscape of endo-lysosomal pH in neurodegenerative diseases. Given that pharmacologic correction of luminal hyperacidification defect completely ameliorates endo-lysosomal deficits in eNHE deletion yeast, there is compelling reason to believe that efforts to target endo-lysosomal acid-base homeostasis will eventually lead to novel therapeutic approaches for neurodegenerative diseases.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268332/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf034","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although endo-lysosomal abnormalities have been recognized as a pathognomonic feature of Alzheimer's disease, the lack of druggable targets has hampered the translation from bench to bedside. This article provides an overview of the insights gained from yeast research with a focus on understudied luminal acidification mechanisms and their major impact on disease progression. The yeast-to-human discovery and validation strategy identified a "druggable" triad featuring luminal pH, sterol content, and trafficking that (dys)regulate reciprocally. Endosomal Na+/H+ exchangers (eNHE), discovered in yeast and later described in mammals, provide independent support for this pathogenic model. The brain is often the most severely affected organ in patients with eNHE mutations, and a subset is causally linked to progressive and severe neurodegeneration, demonstrating that neurons heavily rely on fine-tuning of endosomal pH. We present recent advances on the role of eNHE in ageing related neurodegenerative diseases, which has implications for pathogenesis and therapy. Future studies should unravel the broader landscape of endo-lysosomal pH in neurodegenerative diseases. Given that pharmacologic correction of luminal hyperacidification defect completely ameliorates endo-lysosomal deficits in eNHE deletion yeast, there is compelling reason to believe that efforts to target endo-lysosomal acid-base homeostasis will eventually lead to novel therapeutic approaches for neurodegenerative diseases.

内溶酶体pH值、固醇和转运与神经退行性疾病的关系。
虽然内溶酶体异常已被认为是阿尔茨海默病的一种病理特征,但缺乏可药物靶点阻碍了从实验到临床的转化。本文概述了从酵母研究中获得的见解,重点关注未充分研究的腔内酸化机制及其对疾病进展的主要影响。酵母对人类的发现和验证策略确定了一种“可药物化”的三元组,其特征是腔内pH值、甾醇含量和(天)相互调节的贩运。内体Na+/H+交换体(eNHE)在酵母中被发现,后来在哺乳动物中被描述,为这种致病模型提供了独立的支持。在eNHE突变患者中,大脑通常是受影响最严重的器官,其中一个亚群与进行性和严重的神经退行性变有因果关系,这表明神经元严重依赖于内体ph的微调。我们介绍了eNHE在衰老相关神经退行性疾病中的作用的最新进展,这对发病机制和治疗具有重要意义。未来的研究应该揭示神经退行性疾病中内溶酶体pH值的更广泛的前景。鉴于对腔内超酸化缺陷的药理学纠正完全改善了eNHE缺失酵母的内溶酶体缺陷,有令人信服的理由相信,针对内溶酶体酸碱平衡的努力将最终导致神经退行性疾病的新治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信