{"title":"Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stem Cells in Diabetic Osteoporosis by Regulating Autophagy.","authors":"Huayue Cao, Qilin Li, Yujin Gao, Jingxiang Li, Peiyang Yu, Xiaorong Lan, Shuanglin Peng, Jingang Xiao","doi":"10.1002/cbin.70061","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with diabetic osteoporosis (DOP) face significant challenges in bone defect repair and regeneration. Adipose-derived stem cells (ASCs) have been widely used in bone tissue engineering due to their accessibility and multi-potency. However, DOP-ASCs exhibit lower capacity for osteogenic differentiation compared to control ASCs (CON-ASCs). In this study, we explored the effects of metformin (Met) on the autophagy and osteogenic capacity of DOP-ASCs. DOP mouse model was established with a high-fat and high-glucose diet combined with streptozotocin injection. After treating DOP-ASCs with Met and 3-methyladenine (3-MA), changes in autophagy levels and osteogenic differentiation capacity were observed by western blot analysis, real-time quantitative PCR (qPCR), immunofluorescence, alkaline phosphatase staining, alizarin red staining, and GFP-LC3 fluorescence labeling analysis. DOP-ASCs were cocultured with the Biphasic Calcium Phosphate (BCP), and implanted into the cranial defect area of DOP mice. The mice then received oral Met and intraperitoneal 3-MA injections for 3 months. The implanted BCP was assessed by micro-CT, HE and Masson staining. We observed a significantly reduced autophagic levels and capacity for osteogenic differentiation in DOP-ASCs, as compared to CON-ASCs. Met activated autophagy in DOP-ASCs and improved their osteogenic differentiation capacity. However, in the DOP + Met + 3MA group, both the autophagic level and the osteogenic differentiation capacity were suppressed. The results from the in vitro research and the in vivo outcomes agreed. Moreover, Met dramatically reduced p-PI3K and p-AKT expression. Met improves the osteogenic differentiation capacity by activating autophagy, an effect mediated through the PI3K/AKT signaling pathway.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with diabetic osteoporosis (DOP) face significant challenges in bone defect repair and regeneration. Adipose-derived stem cells (ASCs) have been widely used in bone tissue engineering due to their accessibility and multi-potency. However, DOP-ASCs exhibit lower capacity for osteogenic differentiation compared to control ASCs (CON-ASCs). In this study, we explored the effects of metformin (Met) on the autophagy and osteogenic capacity of DOP-ASCs. DOP mouse model was established with a high-fat and high-glucose diet combined with streptozotocin injection. After treating DOP-ASCs with Met and 3-methyladenine (3-MA), changes in autophagy levels and osteogenic differentiation capacity were observed by western blot analysis, real-time quantitative PCR (qPCR), immunofluorescence, alkaline phosphatase staining, alizarin red staining, and GFP-LC3 fluorescence labeling analysis. DOP-ASCs were cocultured with the Biphasic Calcium Phosphate (BCP), and implanted into the cranial defect area of DOP mice. The mice then received oral Met and intraperitoneal 3-MA injections for 3 months. The implanted BCP was assessed by micro-CT, HE and Masson staining. We observed a significantly reduced autophagic levels and capacity for osteogenic differentiation in DOP-ASCs, as compared to CON-ASCs. Met activated autophagy in DOP-ASCs and improved their osteogenic differentiation capacity. However, in the DOP + Met + 3MA group, both the autophagic level and the osteogenic differentiation capacity were suppressed. The results from the in vitro research and the in vivo outcomes agreed. Moreover, Met dramatically reduced p-PI3K and p-AKT expression. Met improves the osteogenic differentiation capacity by activating autophagy, an effect mediated through the PI3K/AKT signaling pathway.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.