Qualification of a electrochemiluminescence assay for the detection of human urinary neurotrophin receptor p75.

IF 1.8 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Bioanalysis Pub Date : 2025-06-01 Epub Date: 2025-07-09 DOI:10.1080/17576180.2025.2529147
Matthew J Lawless, Nikki Chan, Kruti Patel, Michelle Wang, David C Colter
{"title":"Qualification of a electrochemiluminescence assay for the detection of human urinary neurotrophin receptor p75.","authors":"Matthew J Lawless, Nikki Chan, Kruti Patel, Michelle Wang, David C Colter","doi":"10.1080/17576180.2025.2529147","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular domain of the neurotrophin receptor p75 has been shown to be a prominent biomarker for both disease diagnosis and progression for amyotrophic lateral sclerosis. This urinary analyte may serve as a valuable fluid biomarker which greatly increases the ease of sample collection in both healthy volunteers and patients. In this paper, the method development and validation for an electrochemiluminescence assay is described. This assay completely uses commercially available reagents and can be performed using common lab equipment found in most bioanalytical labs. This method shows good accuracy and precision, high sensitivity as well as good parallelism illustrating the ability of the method to detect and report on urinary concentrations of neurotrophin receptor p75. The assay can quantitate as low as 78 pg/mL of neurotrophin receptor p75 and > 98% of healthy urine samples tested fell within the dynamic range of the assay.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"807-815"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2025.2529147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The extracellular domain of the neurotrophin receptor p75 has been shown to be a prominent biomarker for both disease diagnosis and progression for amyotrophic lateral sclerosis. This urinary analyte may serve as a valuable fluid biomarker which greatly increases the ease of sample collection in both healthy volunteers and patients. In this paper, the method development and validation for an electrochemiluminescence assay is described. This assay completely uses commercially available reagents and can be performed using common lab equipment found in most bioanalytical labs. This method shows good accuracy and precision, high sensitivity as well as good parallelism illustrating the ability of the method to detect and report on urinary concentrations of neurotrophin receptor p75. The assay can quantitate as low as 78 pg/mL of neurotrophin receptor p75 and > 98% of healthy urine samples tested fell within the dynamic range of the assay.

Abstract Image

Abstract Image

Abstract Image

用于检测人尿神经营养因子受体p75的电化学发光试验的鉴定。
神经营养因子受体p75的细胞外结构域已被证明是肌萎缩性侧索硬化症疾病诊断和进展的重要生物标志物。这种尿液分析物可以作为一种有价值的液体生物标志物,大大增加了健康志愿者和患者样本收集的便利性。本文介绍了电化学发光测定方法的建立和验证。该分析完全使用市售试剂,并可使用大多数生物分析实验室中常见的实验室设备进行。该方法具有良好的准确度和精密度、高灵敏度和良好的并行性,说明该方法能够检测和报告尿中神经营养因子受体p75的浓度。该方法可以定量检测低至78 pg/mL的神经营养因子受体p75和bbb98 %的健康尿液样本在检测的动态范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioanalysis
Bioanalysis BIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍: Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing. The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality. Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing. The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques. Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信