{"title":"Acceleration of axonal regeneration by GABA/Gly excitation.","authors":"Chitoshi Takayama, Tsukasa Yafuso","doi":"10.1007/s12565-025-00869-8","DOIUrl":null,"url":null,"abstract":"<p><p>In the mature central nervous system (CNS), γ-aminobutyric acid (GABA) and glycine (Gly) are predominant inhibitory neurotransmitters that negatively regulate neural activities. In contrast, GABA mediates membrane potential depolarization during development, and GABA/Gly become excitatory after nerve injury because of the high intracellular Cl<sup>-</sup> concentration induced by low expression of K<sup>+</sup>, Cl<sup>-</sup> cotransporter 2 (KCC2), which transports Cl<sup>-</sup> out of neurons. Many studies have reported that during CNS development, GABAergic excitatory action might play crucial roles in neurogenesis through Ca<sup>2+</sup> influx. Nevertheless, its involvement in neurogenesis has not been proven because the CNS can develop normally without GABAergic signals. Recently, two research groups demonstrated that low level of KCC2 (i.e., GABA/Gly excitation) after nerve injury is involved in axonal regeneration and in enhancement of functional recovery. In this manuscript, we review GABA/Gly excitation and introduce recent findings describing its involvement in axonal regeneration.</p>","PeriodicalId":7816,"journal":{"name":"Anatomical Science International","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Science International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12565-025-00869-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the mature central nervous system (CNS), γ-aminobutyric acid (GABA) and glycine (Gly) are predominant inhibitory neurotransmitters that negatively regulate neural activities. In contrast, GABA mediates membrane potential depolarization during development, and GABA/Gly become excitatory after nerve injury because of the high intracellular Cl- concentration induced by low expression of K+, Cl- cotransporter 2 (KCC2), which transports Cl- out of neurons. Many studies have reported that during CNS development, GABAergic excitatory action might play crucial roles in neurogenesis through Ca2+ influx. Nevertheless, its involvement in neurogenesis has not been proven because the CNS can develop normally without GABAergic signals. Recently, two research groups demonstrated that low level of KCC2 (i.e., GABA/Gly excitation) after nerve injury is involved in axonal regeneration and in enhancement of functional recovery. In this manuscript, we review GABA/Gly excitation and introduce recent findings describing its involvement in axonal regeneration.
期刊介绍:
The official English journal of the Japanese Association of Anatomists, Anatomical Science International (formerly titled Kaibogaku Zasshi) publishes original research articles dealing with morphological sciences.
Coverage in the journal includes molecular, cellular, histological and gross anatomical studies on humans and on normal and experimental animals, as well as functional morphological, biochemical, physiological and behavioral studies if they include morphological analysis.