Data sharing in the PRIMED Consortium: Design, implementation, and recommendations for future policymaking.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Johanna L Smith, Quenna Wong, Whitney Hornsby, Matthew P Conomos, Benjamin D Heavner, Iftikhar J Kullo, Bruce M Psaty, Stephen S Rich, Adrienne M Stilp, Bamidele Tayo, Yuji Zhang, Pradeep Natarajan, Sarah C Nelson
{"title":"Data sharing in the PRIMED Consortium: Design, implementation, and recommendations for future policymaking.","authors":"Johanna L Smith, Quenna Wong, Whitney Hornsby, Matthew P Conomos, Benjamin D Heavner, Iftikhar J Kullo, Bruce M Psaty, Stephen S Rich, Adrienne M Stilp, Bamidele Tayo, Yuji Zhang, Pradeep Natarajan, Sarah C Nelson","doi":"10.1016/j.ajhg.2025.06.004","DOIUrl":null,"url":null,"abstract":"<p><p>Sharing diverse genomic and other biomedical datasets is critical to advancing scientific discoveries and their equitable translation to improve human health. However, data sharing remains challenging in the context of legacy datasets, evolving policies, multi-institutional consortium science, and international stakeholders. The NIH-funded Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium was established to improve the performance of polygenic risk estimates for a broad range of health and disease outcomes with global impacts. Improving polygenic risk score performance across genetically diverse populations requires access to large, diverse cohorts. We report on the design and implementation of data-sharing policies and procedures developed in PRIMED to aggregate and analyze data from multiple heterogeneous sources while adhering to pre-existing data-sharing policies for each integrated dataset and respecting participant preferences and informed consent. Specifically, we describe two primary data-sharing mechanisms-coordinated dbGaP applications and a Consortium Data Sharing Agreement-and provide alternatives when individual-level data cannot be shared within the Consortium (e.g., federated analyses). We also describe technical implementation of Consortium data sharing in the NHGRI Analysis Visualization and Informatics Lab-space (AnVIL) cloud platform to share derived individual-level data, genomic summary results, and methods workflows with appropriate permissions. As a consortium making secondary use of pre-existing data sources, we also discuss challenges and propose solutions for release of individual- and summary-level data products to the broader scientific community. We make recommendations for ongoing and future policymaking with the goal of informing future consortia and other research activities.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.06.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Sharing diverse genomic and other biomedical datasets is critical to advancing scientific discoveries and their equitable translation to improve human health. However, data sharing remains challenging in the context of legacy datasets, evolving policies, multi-institutional consortium science, and international stakeholders. The NIH-funded Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium was established to improve the performance of polygenic risk estimates for a broad range of health and disease outcomes with global impacts. Improving polygenic risk score performance across genetically diverse populations requires access to large, diverse cohorts. We report on the design and implementation of data-sharing policies and procedures developed in PRIMED to aggregate and analyze data from multiple heterogeneous sources while adhering to pre-existing data-sharing policies for each integrated dataset and respecting participant preferences and informed consent. Specifically, we describe two primary data-sharing mechanisms-coordinated dbGaP applications and a Consortium Data Sharing Agreement-and provide alternatives when individual-level data cannot be shared within the Consortium (e.g., federated analyses). We also describe technical implementation of Consortium data sharing in the NHGRI Analysis Visualization and Informatics Lab-space (AnVIL) cloud platform to share derived individual-level data, genomic summary results, and methods workflows with appropriate permissions. As a consortium making secondary use of pre-existing data sources, we also discuss challenges and propose solutions for release of individual- and summary-level data products to the broader scientific community. We make recommendations for ongoing and future policymaking with the goal of informing future consortia and other research activities.

PRIMED联盟的数据共享:未来政策制定的设计、实施和建议。
共享各种基因组和其他生物医学数据集对于推进科学发现及其公平转化以改善人类健康至关重要。然而,在遗留数据集、不断演变的政策、多机构联盟科学和国际利益相关者的背景下,数据共享仍然具有挑战性。美国国立卫生研究院资助的不同人群多基因风险方法(PRIMED)联盟的建立是为了提高对具有全球影响的广泛健康和疾病结果的多基因风险估计的性能。提高遗传多样性人群的多基因风险评分表现需要获得大量不同的队列。我们报告了在PRIMED中制定的数据共享政策和程序的设计和实施,以汇总和分析来自多个异构来源的数据,同时坚持每个集成数据集的预先存在的数据共享政策,并尊重参与者的偏好和知情同意。具体地说,我们描述了两种主要的数据共享机制——协调dbGaP应用程序和联盟数据共享协议——并提供了当个人级别的数据不能在联盟内共享时的替代方案(例如,联邦分析)。我们还描述了在NHGRI分析可视化和信息学实验室空间(AnVIL)云平台上实现联盟数据共享的技术实现,以在适当的权限下共享衍生的个人层面数据、基因组汇总结果和方法工作流。作为一个利用已有数据源的联盟,我们还讨论了向更广泛的科学界发布个人和摘要级数据产品的挑战并提出了解决方案。我们为正在进行和未来的政策制定提供建议,目的是为未来的联盟和其他研究活动提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信