Atomistic Simulations of Thermal and Chemical Expansions of PrNixCo1-xO3-δ Accelerated by Machine Learning Potentials.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hao Deng, Quanwen Sun, Meng Li, Zeyu Zhao, Wenjuan Bian, Bin Liu, Dong Ding
{"title":"Atomistic Simulations of Thermal and Chemical Expansions of PrNi<sub>x</sub>Co<sub>1-x</sub>O<sub>3-δ</sub> Accelerated by Machine Learning Potentials.","authors":"Hao Deng, Quanwen Sun, Meng Li, Zeyu Zhao, Wenjuan Bian, Bin Liu, Dong Ding","doi":"10.1002/smtd.202500816","DOIUrl":null,"url":null,"abstract":"<p><p>The electrodes and solid-state electrolytes in protonic ceramic electrochemical cells (PCECs) experience significant lattice expansions when exposed to high steam concentrations at elevated temperatures. In this paper, phonon calculations based on a new machine learning potential (MLP) are employed to elucidate the volume expansions of the proton-conducting PrNi<sub>x</sub>Co<sub>1-x</sub>O<sub>3-δ</sub> (PNC) lattices, manifested under a combined influence of oxygen vacancies ( <math> <semantics><msubsup><mi>V</mi> <mi>O</mi> <mrow><mo>·</mo> <mo>·</mo></mrow> </msubsup> <annotation>${\\mathrm{V}}_{\\mathrm{O}}^{{\\mathrm{\\cdot\\cdot}}}$</annotation></semantics> </math> ) and proton uptake ( <math> <semantics><msubsup><mi>OH</mi> <mi>O</mi> <mo>·</mo></msubsup> <annotation>${\\mathrm{OH}}_{\\mathrm{O}}^{\\mathrm{\\cdot}}$</annotation></semantics> </math> ) in the bulk at varying Ni/Co occupancies. It is revealed that the Ni/Co occupancy contributes to thermal and chemical expansions differently, where thermal expansions are related to Co occupancy. In contrast, chemical expansions are more closely associated with the Ni occupancy. Both <math> <semantics><msubsup><mi>V</mi> <mi>O</mi> <mrow><mo>·</mo> <mo>·</mo></mrow> </msubsup> <annotation>${\\mathrm{V}}_{\\mathrm{O}}^{{\\mathrm{\\cdot\\cdot}}}$</annotation></semantics> </math> and <math> <semantics><msubsup><mi>OH</mi> <mi>O</mi> <mo>·</mo></msubsup> <annotation>${\\mathrm{OH}}_{\\mathrm{O}}^{\\mathrm{\\cdot}}$</annotation></semantics> </math> lead to higher thermal expansions when compared to the pristine PNC. The temperature increase will negatively impact the hydration-induced chemical expansions. For combined thermal and chemical expansions, it is predicted that the strategies that boost the PCEC's electrochemical performance may harm the electrode-electrolyte interfacial stability, when the Ni occupancy is high, due to severe chemical expansions. Mitigating chemical expansions of the Ni-abundant PNC will benefit the interfacial stability. The presented computational methods for phonon calculations, based on emerging machine learning interatomic potential techniques are anticipated to have a lasting impact on future PCEC development.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500816"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500816","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrodes and solid-state electrolytes in protonic ceramic electrochemical cells (PCECs) experience significant lattice expansions when exposed to high steam concentrations at elevated temperatures. In this paper, phonon calculations based on a new machine learning potential (MLP) are employed to elucidate the volume expansions of the proton-conducting PrNixCo1-xO3-δ (PNC) lattices, manifested under a combined influence of oxygen vacancies ( V O · · ${\mathrm{V}}_{\mathrm{O}}^{{\mathrm{\cdot\cdot}}}$ ) and proton uptake ( OH O · ${\mathrm{OH}}_{\mathrm{O}}^{\mathrm{\cdot}}$ ) in the bulk at varying Ni/Co occupancies. It is revealed that the Ni/Co occupancy contributes to thermal and chemical expansions differently, where thermal expansions are related to Co occupancy. In contrast, chemical expansions are more closely associated with the Ni occupancy. Both V O · · ${\mathrm{V}}_{\mathrm{O}}^{{\mathrm{\cdot\cdot}}}$ and OH O · ${\mathrm{OH}}_{\mathrm{O}}^{\mathrm{\cdot}}$ lead to higher thermal expansions when compared to the pristine PNC. The temperature increase will negatively impact the hydration-induced chemical expansions. For combined thermal and chemical expansions, it is predicted that the strategies that boost the PCEC's electrochemical performance may harm the electrode-electrolyte interfacial stability, when the Ni occupancy is high, due to severe chemical expansions. Mitigating chemical expansions of the Ni-abundant PNC will benefit the interfacial stability. The presented computational methods for phonon calculations, based on emerging machine learning interatomic potential techniques are anticipated to have a lasting impact on future PCEC development.

机器学习势加速PrNixCo1-xO3-δ热膨胀和化学膨胀的原子模拟
质子陶瓷电化学电池(PCECs)中的电极和固态电解质在高温下暴露于高蒸汽浓度时,会发生显著的晶格膨胀。本文采用基于新机器学习势(MLP)的声子计算来阐明质子导电PrNixCo1-xO3-δ (PNC)晶格的体积膨胀,表现在氧空位(V O··${\mathrm{V}}_{\mathrm{\cdot\cdot}}}$)和质子吸收(OH O·${\mathrm{OH}}_{\mathrm{O}}} {\mathrm{\cdot}}$)在不同Ni/Co占位下的综合影响下。结果表明,Ni/Co占比对热膨胀和化学膨胀的影响不同,其中热膨胀与Co占比有关。相反,化学膨胀与Ni占位关系更密切。与原始PNC相比,V O··${\mathrm{V}}_{\mathrm{O}}} {{\mathrm{\cdot\cdot}} $和OH O··${\mathrm{OH}}_{\mathrm{O}}^{\mathrm{\cdot}}$都导致更高的热膨胀。温度升高会对水化诱导的化学膨胀产生负面影响。对于热膨胀和化学膨胀的复合反应,预测当Ni占比较高时,由于剧烈的化学膨胀,提高PCEC电化学性能的策略可能会损害电极-电解质界面的稳定性。减少富镍PNC的化学膨胀有利于界面稳定性。基于新兴机器学习原子间势技术提出的声子计算方法预计将对未来PCEC的发展产生持久的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信