Confusion-Driven Machine Learning of Structural Phases of a Flexible, Magnetic Stockmayer Polymer.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-07-22 Epub Date: 2025-07-08 DOI:10.1021/acs.jctc.5c00381
Dilina Perera, Samuel McAllister, Joan Josep Cerdà, Thomas Vogel
{"title":"Confusion-Driven Machine Learning of Structural Phases of a Flexible, Magnetic Stockmayer Polymer.","authors":"Dilina Perera, Samuel McAllister, Joan Josep Cerdà, Thomas Vogel","doi":"10.1021/acs.jctc.5c00381","DOIUrl":null,"url":null,"abstract":"<p><p>We use a semisupervised, neural-network-based machine learning technique, the confusion method, to investigate structural transitions in magnetic polymers, which we model as chains of magnetic colloidal nanoparticles characterized by dipole-dipole and Lennard-Jones interactions. As input for the neural network, we use the particle positions and magnetic dipole moments of equilibrium polymer configurations, which we generate via replica-exchange Wang-Landau simulations. We demonstrate that by measuring the classification accuracy of neural networks, we can effectively identify transition points between multiple structural phases without any prior knowledge of their existence or location. We corroborate our findings by investigating relevant conventional order parameters. Our study furthermore examines previously unexplored low-temperature regions of the phase diagram, where we find new structural transitions between highly ordered helicoidal polymer configurations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"6729-6742"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00381","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We use a semisupervised, neural-network-based machine learning technique, the confusion method, to investigate structural transitions in magnetic polymers, which we model as chains of magnetic colloidal nanoparticles characterized by dipole-dipole and Lennard-Jones interactions. As input for the neural network, we use the particle positions and magnetic dipole moments of equilibrium polymer configurations, which we generate via replica-exchange Wang-Landau simulations. We demonstrate that by measuring the classification accuracy of neural networks, we can effectively identify transition points between multiple structural phases without any prior knowledge of their existence or location. We corroborate our findings by investigating relevant conventional order parameters. Our study furthermore examines previously unexplored low-temperature regions of the phase diagram, where we find new structural transitions between highly ordered helicoidal polymer configurations.

一种柔性磁性斯托克梅尔聚合物结构相的混沌驱动机器学习。
我们使用一种半监督的、基于神经网络的机器学习技术,即混淆方法,来研究磁性聚合物的结构转变,我们将其建模为具有偶极子-偶极子和Lennard-Jones相互作用特征的磁性胶体纳米颗粒链。作为神经网络的输入,我们使用了通过复制交换Wang-Landau模拟生成的平衡聚合物构型的粒子位置和磁偶极矩。我们证明,通过测量神经网络的分类精度,我们可以有效地识别多个结构阶段之间的过渡点,而不需要事先知道它们的存在或位置。我们通过调查相关的常规顺序参数来证实我们的发现。我们的研究进一步检查了以前未探索的相图的低温区域,在那里我们发现了高度有序的螺旋形聚合物构型之间的新结构转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信