Qinheng Zheng, Tianfang Shen, Julius Pampel, Kevan M Shokat
{"title":"Distal Covalent Targeting Suppresses Signaling of Oncogenic K-Ras(G13C) in Cancer Cells.","authors":"Qinheng Zheng, Tianfang Shen, Julius Pampel, Kevan M Shokat","doi":"10.1021/acschembio.5c00249","DOIUrl":null,"url":null,"abstract":"<p><p>Oncogenic mutations of Ras are among the most common genetic alterations in human cancer, with an estimated disease burden of >3 million new patients per year worldwide. Despite widespread appreciation of the importance of Ras in cancer, direct binding ligands, which block downstream signaling, were not reported until 2013 due to the lack of obvious drug binding pockets in the protein. The clinically approved K-Ras inhibitors are mutant-selective as they rely on covalent recognition of the highly nucleophilic somatic cysteine residue of K-Ras(G12C). Recent preclinical reports of noncovalent K-Ras binding inhibitors have emerged, which lack mutant specificity and exhibit varying degrees of biochemical preference for mutant K-Ras over the wild-type. An adjacent glycine-13 mutation, p. G13C, particularly abundant in lung, colorectal, and pancreatic cancer, has not been targeted with an approved therapeutic molecule. Here, we report a series of targeted electrophiles designed to covalently modify Cys13 in K-Ras(G13C), overcoming the structural challenge posed by its shifted position relative to Cys12 in K-Ras(G12C). These inhibitors effectively alkylate K-Ras(G13C) in both GDP- and GTP-bound states, block effector interactions, and suppress the growth of K-Ras(G13C)-mutation cancer cell lines. Our findings expand the landscape of covalent K-Ras inhibitors beyond G12 mutations, providing a new therapeutic strategy for K-Ras(G13C)-driven cancers.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"1696-1706"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00249","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oncogenic mutations of Ras are among the most common genetic alterations in human cancer, with an estimated disease burden of >3 million new patients per year worldwide. Despite widespread appreciation of the importance of Ras in cancer, direct binding ligands, which block downstream signaling, were not reported until 2013 due to the lack of obvious drug binding pockets in the protein. The clinically approved K-Ras inhibitors are mutant-selective as they rely on covalent recognition of the highly nucleophilic somatic cysteine residue of K-Ras(G12C). Recent preclinical reports of noncovalent K-Ras binding inhibitors have emerged, which lack mutant specificity and exhibit varying degrees of biochemical preference for mutant K-Ras over the wild-type. An adjacent glycine-13 mutation, p. G13C, particularly abundant in lung, colorectal, and pancreatic cancer, has not been targeted with an approved therapeutic molecule. Here, we report a series of targeted electrophiles designed to covalently modify Cys13 in K-Ras(G13C), overcoming the structural challenge posed by its shifted position relative to Cys12 in K-Ras(G12C). These inhibitors effectively alkylate K-Ras(G13C) in both GDP- and GTP-bound states, block effector interactions, and suppress the growth of K-Ras(G13C)-mutation cancer cell lines. Our findings expand the landscape of covalent K-Ras inhibitors beyond G12 mutations, providing a new therapeutic strategy for K-Ras(G13C)-driven cancers.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.