Approach to Tuning the Dispersion Stability of TEMPO-substituted Polymer Nanoparticles for Aqueous Organic Redox Flow Batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-07-08 DOI:10.1002/cssc.202500911
Kohei Ishigami, Shinjiro Mori, Kenichi Oyaizu
{"title":"Approach to Tuning the Dispersion Stability of TEMPO-substituted Polymer Nanoparticles for Aqueous Organic Redox Flow Batteries.","authors":"Kohei Ishigami, Shinjiro Mori, Kenichi Oyaizu","doi":"10.1002/cssc.202500911","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrophilic redox polymer nanoparticles with zwitterionic moieties were synthesized to improve material utilization for semi-solid redox flow batteries. TEMPO was chosen as the charge storage moiety, taking advantage of its high redox-activity in pH-neutral aqueous electrolytes. Redox-active polymer nanoparticles copolymerized with the zwitterionic moiety showed significant changes in surface properties, indicating promising dispersion stability and electrochemical performance even at more than 1 mol% zwitterionic moiety in the copolymer in prototype semi-solid redox flow batteries. Among the compositions studied, the introduction of 10 mol% zwitterionic moiety resulted in the best combination of material utilization and cycle stability. This approach is an effective molecular design strategy to achieve high performance and high volumetric density semi-solid redox flow batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500911"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500911","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrophilic redox polymer nanoparticles with zwitterionic moieties were synthesized to improve material utilization for semi-solid redox flow batteries. TEMPO was chosen as the charge storage moiety, taking advantage of its high redox-activity in pH-neutral aqueous electrolytes. Redox-active polymer nanoparticles copolymerized with the zwitterionic moiety showed significant changes in surface properties, indicating promising dispersion stability and electrochemical performance even at more than 1 mol% zwitterionic moiety in the copolymer in prototype semi-solid redox flow batteries. Among the compositions studied, the introduction of 10 mol% zwitterionic moiety resulted in the best combination of material utilization and cycle stability. This approach is an effective molecular design strategy to achieve high performance and high volumetric density semi-solid redox flow batteries.

有机水氧化还原液流电池中tempo取代聚合物纳米颗粒分散稳定性的调控方法。
为提高半固态氧化还原液流电池的材料利用率,合成了两性离子亲水氧化还原聚合物纳米颗粒。选择TEMPO作为电荷存储部分,利用其在ph中性水溶液中的高氧化还原活性。在半固态氧化还原液流电池中,与两性离子部分共聚的氧化还原活性聚合物纳米颗粒的表面性质发生了显著变化,表明即使共聚物中两性离子部分超过1 mol%,也具有良好的分散稳定性和电化学性能。在所研究的组合物中,引入10mol %两性离子部分的组合物获得了材料利用率和循环稳定性的最佳组合。该方法是实现高性能、高体积密度半固态氧化还原液流电池的有效分子设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信