Dumitru Călugăru, Yi Jiang, Haoyu Hu, Hanqi Pi, Jiabin Yu, Maia G. Vergniory, Jie Shan, Claudia Felser, Leslie M. Schoop, Dmitri K. Efetov, Kin Fai Mak, B. Andrei Bernevig
{"title":"Moiré materials based on M-point twisting","authors":"Dumitru Călugăru, Yi Jiang, Haoyu Hu, Hanqi Pi, Jiabin Yu, Maia G. Vergniory, Jie Shan, Claudia Felser, Leslie M. Schoop, Dmitri K. Efetov, Kin Fai Mak, B. Andrei Bernevig","doi":"10.1038/s41586-025-09187-5","DOIUrl":null,"url":null,"abstract":"When two monolayer materials are stacked with a relative twist, an effective moiré translation symmetry emerges, leading to fundamentally different properties in the resulting heterostructure. As such, moiré materials have recently provided highly tunable platforms for exploring strongly correlated systems1,2. However, previous studies have focused almost exclusively on monolayers with triangular lattices and low-energy states near the Γ (refs. 3,4) or K (refs. 5–9) points of the Brillouin zone (BZ). Here we introduce a new class of moiré systems based on monolayers with triangular lattices but low-energy states at the M points of the BZ. These M-point moiré materials feature three time-reversal-preserving valleys related by threefold rotational symmetry. We propose twisted bilayers of exfoliable 1T-SnSe2 and 1T-ZrS2 as realizations of this new class. Using extensive ab initio simulations, we identify twist angles that yield flat conduction bands, provide accurate continuum models, analyse their topology and charge density and explore the platform’s rich physics. Notably, the M-point moiré Hamiltonians exhibit emergent momentum-space non-symmorphic symmetries and a kagome plane-wave lattice structure. This represents, to our knowledge, the first experimentally viable realization of projective representations of crystalline space groups in a non-magnetic system. With interactions, these systems act as six-flavour Hubbard simulators with Mott physics. Moreover, the presence of a momentum-space non-symmorphic in-plane mirror symmetry renders some of the M-point moiré Hamiltonians quasi-one-dimensional in each valley, suggesting the possibility of realizing Luttinger-liquid physics. A new class of moiré materials based on monolayers with triangular lattices and low-energy states at the M points of the Brillouin zone is introduced, demonstrating emergent momentum-space non-symmorphic symmetries, a kagome plane-wave lattice structure, and potential quasi-one-dimensionality.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"643 8071","pages":"376-381"},"PeriodicalIF":50.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-09187-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09187-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
When two monolayer materials are stacked with a relative twist, an effective moiré translation symmetry emerges, leading to fundamentally different properties in the resulting heterostructure. As such, moiré materials have recently provided highly tunable platforms for exploring strongly correlated systems1,2. However, previous studies have focused almost exclusively on monolayers with triangular lattices and low-energy states near the Γ (refs. 3,4) or K (refs. 5–9) points of the Brillouin zone (BZ). Here we introduce a new class of moiré systems based on monolayers with triangular lattices but low-energy states at the M points of the BZ. These M-point moiré materials feature three time-reversal-preserving valleys related by threefold rotational symmetry. We propose twisted bilayers of exfoliable 1T-SnSe2 and 1T-ZrS2 as realizations of this new class. Using extensive ab initio simulations, we identify twist angles that yield flat conduction bands, provide accurate continuum models, analyse their topology and charge density and explore the platform’s rich physics. Notably, the M-point moiré Hamiltonians exhibit emergent momentum-space non-symmorphic symmetries and a kagome plane-wave lattice structure. This represents, to our knowledge, the first experimentally viable realization of projective representations of crystalline space groups in a non-magnetic system. With interactions, these systems act as six-flavour Hubbard simulators with Mott physics. Moreover, the presence of a momentum-space non-symmorphic in-plane mirror symmetry renders some of the M-point moiré Hamiltonians quasi-one-dimensional in each valley, suggesting the possibility of realizing Luttinger-liquid physics. A new class of moiré materials based on monolayers with triangular lattices and low-energy states at the M points of the Brillouin zone is introduced, demonstrating emergent momentum-space non-symmorphic symmetries, a kagome plane-wave lattice structure, and potential quasi-one-dimensionality.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.