Effective CO2 Decomposition in a Nonthermal Atmospheric Pressure Plasma Jet System Coupled with CuO Catalysts

IF 5.7 Q2 ENERGY & FUELS
Hsuan-Hung Kuo, Chan-Yu Liu, Yu-Chen Wei, Chih-Chiang Weng, Kao-Der Chang, Yung-Jung Hsu
{"title":"Effective CO2 Decomposition in a Nonthermal Atmospheric Pressure Plasma Jet System Coupled with CuO Catalysts","authors":"Hsuan-Hung Kuo,&nbsp;Chan-Yu Liu,&nbsp;Yu-Chen Wei,&nbsp;Chih-Chiang Weng,&nbsp;Kao-Der Chang,&nbsp;Yung-Jung Hsu","doi":"10.1002/aesr.202400409","DOIUrl":null,"url":null,"abstract":"<p>Plasma-assisted CO<sub>2</sub> decomposition is a promising strategy for mitigating CO<sub>2</sub> emissions. This study integrates a nonthermal atmospheric pressure plasma jet (NTAPPJ) system with CuO catalysts to enhance CO<sub>2</sub> conversion, selectivity, and energy efficiency through synergistic plasma–catalyst interactions. Optimization of discharge power and CO<sub>2</sub> flow rate reveals that higher power increases CO output but reduces energy efficiency, while elevated flow rates improve CO yield but decrease conversion rates. Optimal conditions (100 W, 10 sccm CO<sub>2</sub> flow rate) yield 37.98% conversion and 0.73% energy efficiency, with stable performance over 8 h. Experiments isolating photocatalytic and thermal catalytic contributions identify oxygen vacancies in CuO as active sites facilitating CO<sub>2</sub> adsorption and activation. These findings establish NTAPPJ-CuO systems as an innovative approach to plasma–catalyst CO<sub>2</sub> decomposition, offering new insights into plasma–catalysis mechanism.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400409","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aesr.202400409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma-assisted CO2 decomposition is a promising strategy for mitigating CO2 emissions. This study integrates a nonthermal atmospheric pressure plasma jet (NTAPPJ) system with CuO catalysts to enhance CO2 conversion, selectivity, and energy efficiency through synergistic plasma–catalyst interactions. Optimization of discharge power and CO2 flow rate reveals that higher power increases CO output but reduces energy efficiency, while elevated flow rates improve CO yield but decrease conversion rates. Optimal conditions (100 W, 10 sccm CO2 flow rate) yield 37.98% conversion and 0.73% energy efficiency, with stable performance over 8 h. Experiments isolating photocatalytic and thermal catalytic contributions identify oxygen vacancies in CuO as active sites facilitating CO2 adsorption and activation. These findings establish NTAPPJ-CuO systems as an innovative approach to plasma–catalyst CO2 decomposition, offering new insights into plasma–catalysis mechanism.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

CuO催化剂在非热常压等离子体喷射系统中的有效分解
等离子体辅助二氧化碳分解是一种很有前途的减少二氧化碳排放的策略。本研究将非热大气压等离子体射流(NTAPPJ)系统与CuO催化剂相结合,通过等离子体-催化剂的协同作用提高CO2转化率、选择性和能源效率。对排放功率和CO2流量的优化表明,功率越大,CO产量增加,能效降低;流量越大,CO产量增加,转化率降低。最佳条件为100 W, CO2流量为10 sccm,转化率为37.98%,能效为0.73%,性能稳定超过8 h。分离光催化和热催化作用的实验发现,CuO中的氧空位是促进CO2吸附和活化的活性位点。这些发现确立了NTAPPJ-CuO体系作为等离子体催化剂分解二氧化碳的创新途径,为等离子体催化机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信