Graphene oxide vacancies-assisted low temperature synthesis of graphitic carbon quantum dots for enhanced conductive networks in epoxy composites

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-07-10 DOI:10.1039/D5RA03471J
Thanayuth Jongrungrotbaworn, Rungkiat Nganglumpoon, Suthasinee Watmanee, Sukkaneste Tungasmita, Ryota Sakamoto and Joongjai Panpranot
{"title":"Graphene oxide vacancies-assisted low temperature synthesis of graphitic carbon quantum dots for enhanced conductive networks in epoxy composites","authors":"Thanayuth Jongrungrotbaworn, Rungkiat Nganglumpoon, Suthasinee Watmanee, Sukkaneste Tungasmita, Ryota Sakamoto and Joongjai Panpranot","doi":"10.1039/D5RA03471J","DOIUrl":null,"url":null,"abstract":"<p >Conventional bottom-up synthesis of graphitic carbon quantum dots (g-CQDs) often requires extended reaction times, high energy input, and specialized equipment, limiting scalability and sustainability. In this study, we present an eco-friendly and energy-efficient method for synthesizing g-CQDs using H<small><sub>2</sub></small>CO<small><sub>3</sub></small> as a carbon precursor at just 72 °C for 1 hour—representing one of the lowest reported synthesis temperatures and shortest reaction times using simple apparatus. Graphene oxide vacancies act as catalytic and nucleation sites, promoting the formation of g-CQDs under these mild conditions. The resulting g-CQD solution exhibits strong yellow photoluminescence, with a maximum emission at 533 nm and excitation-independence across the 320–410 nm range. Upon drying, the g-CQDs spontaneously assemble into a three-dimensional (3D) network, which provides additional functionality when incorporated into g-CQD/graphene nanoplatelet epoxy composites. This strategy not only promotes the sustainable production of g-CQDs but also broadens their potential for use in next-generation nanomaterials and optoelectronic devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 29","pages":" 24040-24052"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03471j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03471j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional bottom-up synthesis of graphitic carbon quantum dots (g-CQDs) often requires extended reaction times, high energy input, and specialized equipment, limiting scalability and sustainability. In this study, we present an eco-friendly and energy-efficient method for synthesizing g-CQDs using H2CO3 as a carbon precursor at just 72 °C for 1 hour—representing one of the lowest reported synthesis temperatures and shortest reaction times using simple apparatus. Graphene oxide vacancies act as catalytic and nucleation sites, promoting the formation of g-CQDs under these mild conditions. The resulting g-CQD solution exhibits strong yellow photoluminescence, with a maximum emission at 533 nm and excitation-independence across the 320–410 nm range. Upon drying, the g-CQDs spontaneously assemble into a three-dimensional (3D) network, which provides additional functionality when incorporated into g-CQD/graphene nanoplatelet epoxy composites. This strategy not only promotes the sustainable production of g-CQDs but also broadens their potential for use in next-generation nanomaterials and optoelectronic devices.

Abstract Image

环氧复合材料中用于增强导电网络的氧化石墨烯空位辅助石墨碳量子点低温合成
传统的自下而上合成石墨碳量子点(g-CQDs)通常需要较长的反应时间、高能量输入和专用设备,限制了可扩展性和可持续性。在这项研究中,我们提出了一种环保和节能的方法来合成g-CQDs,使用H2CO3作为碳前驱体,在72°C下合成1小时,这是使用简单设备的最低合成温度和最短反应时间之一。在这些温和的条件下,氧化石墨烯空位作为催化和成核位点,促进了g-CQDs的形成。所得的g-CQD溶液表现出强烈的黄色光致发光,最大发射波长为533 nm,在320-410 nm范围内与激发无关。干燥后,g-CQD自发地组装成三维(3D)网络,当加入g-CQD/石墨烯纳米血小板环氧复合材料时,它提供了额外的功能。这一策略不仅促进了g-CQDs的可持续生产,而且扩大了它们在下一代纳米材料和光电子器件中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信