Zhe Qin , Runchang Zhang , Ke Wang , Lixue Cao , Yushui Yan
{"title":"Shear damage constitutive model of rock-like joint surface considering the coupling effect of cyclic water intrusion and loading","authors":"Zhe Qin , Runchang Zhang , Ke Wang , Lixue Cao , Yushui Yan","doi":"10.1016/j.ijmst.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Prolonged cyclic water intrusion has progressively developed joints in the hydro-fluctuation belt, elevating the instability risk of reservoir bank slopes. To investigate its impact on joint shear damage evolution, joint samples were prepared using three representative roughness curves and subjected to direct shear testing following cyclic water intrusion. A shear damage constitutive model considering the coupling effect of cyclic water intrusion and load was developed based on macroscopic phenomenological damage mechanics and micro-statistical theory. Results indicate: (1) All critical shear mechanical parameters (including peak shear strength, shear stiffness, basic friction angle, and joint compressive strength) exhibit progressive deterioration with increasing water intrusion cycles; (2) Model validation through experimental curve comparisons confirms its reliability. The model demonstrates that intensified water intrusion cycles reduce key mechanical indices, inducing a brittle-to-ductile transition in joint surface deformation — a behavior consistent with experimental observations; (3) Damage under cyclic water intrusion and load coupling follows an S-shaped trend, divided into stabilization (water-dominated stage), development (load-dominated stage), and completion stages. The research provides valuable insights for stability studies, such as similar model experiments for reservoir bank slopes and other water-related projects.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"35 6","pages":"Pages 881-895"},"PeriodicalIF":13.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268625000758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged cyclic water intrusion has progressively developed joints in the hydro-fluctuation belt, elevating the instability risk of reservoir bank slopes. To investigate its impact on joint shear damage evolution, joint samples were prepared using three representative roughness curves and subjected to direct shear testing following cyclic water intrusion. A shear damage constitutive model considering the coupling effect of cyclic water intrusion and load was developed based on macroscopic phenomenological damage mechanics and micro-statistical theory. Results indicate: (1) All critical shear mechanical parameters (including peak shear strength, shear stiffness, basic friction angle, and joint compressive strength) exhibit progressive deterioration with increasing water intrusion cycles; (2) Model validation through experimental curve comparisons confirms its reliability. The model demonstrates that intensified water intrusion cycles reduce key mechanical indices, inducing a brittle-to-ductile transition in joint surface deformation — a behavior consistent with experimental observations; (3) Damage under cyclic water intrusion and load coupling follows an S-shaped trend, divided into stabilization (water-dominated stage), development (load-dominated stage), and completion stages. The research provides valuable insights for stability studies, such as similar model experiments for reservoir bank slopes and other water-related projects.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.